IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08548-9.html
   My bibliography  Save this article

Recessive mutations in muscle-specific isoforms of FXR1 cause congenital multi-minicore myopathy

Author

Listed:
  • María Cristina Estañ

    (Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM
    CIBER de Enfermedades Raras (CIBERER), ISCIII)

  • Elisa Fernández-Núñez

    (Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM)

  • Maha S. Zaki

    (National Research Centre)

  • María Isabel Esteban

    (Hospital Universitario La Paz-IdiPaz-UAM)

  • Sandra Donkervoort

    (National Institutes of Health)

  • Cynthia Hawkins

    (University of Toronto)

  • José A. Caparros-Martin

    (Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM
    CIBER de Enfermedades Raras (CIBERER), ISCIII
    Curtin University)

  • Dimah Saade

    (National Institutes of Health)

  • Ying Hu

    (National Institutes of Health)

  • Véronique Bolduc

    (National Institutes of Health)

  • Katherine Ru-Yui Chao

    (Broad Institute of MIT and Harvard)

  • Julián Nevado

    (Hospital Universitario La Paz-IdiPaz-UAM)

  • Ana Lamuedra

    (The Institution of Health Research (IIS)-Fundación Jiménez Díaz, UAM)

  • Raquel Largo

    (The Institution of Health Research (IIS)-Fundación Jiménez Díaz, UAM)

  • Gabriel Herrero-Beaumont

    (The Institution of Health Research (IIS)-Fundación Jiménez Díaz, UAM)

  • Javier Regadera

    (Universidad Autónoma de Madrid)

  • Concepción Hernandez-Chico

    (CIBER de Enfermedades Raras (CIBERER), ISCIII
    Servicio de Genética, Hospital Ramón y Cajal)

  • Eduardo F. Tizzano

    (CIBER de Enfermedades Raras (CIBERER), ISCIII
    Hospital Vall d’Hebron)

  • Victor Martinez-Glez

    (CIBER de Enfermedades Raras (CIBERER), ISCIII
    Hospital Universitario La Paz-IdiPaz-UAM)

  • Jaime J. Carvajal

    (Universidad Pablo de Olavide)

  • Ruiting Zong

    (Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine)

  • David L. Nelson

    (Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine)

  • Ghada A. Otaify

    (National Research Centre)

  • Samia Temtamy

    (National Research Centre)

  • Mona Aglan

    (National Research Centre)

  • Mahmoud Issa

    (National Research Centre)

  • Carsten G. Bönnemann

    (National Institutes of Health)

  • Pablo Lapunzina

    (CIBER de Enfermedades Raras (CIBERER), ISCIII
    Hospital Universitario La Paz-IdiPaz-UAM)

  • Grace Yoon

    (University of Toronto
    University of Toronto)

  • Victor L. Ruiz-Perez

    (Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM
    CIBER de Enfermedades Raras (CIBERER), ISCIII
    Hospital Universitario La Paz-IdiPaz-UAM)

Abstract

FXR1 is an alternatively spliced gene that encodes RNA binding proteins (FXR1P) involved in muscle development. In contrast to other tissues, cardiac and skeletal muscle express two FXR1P isoforms that incorporate an additional exon-15. We report that recessive mutations in this particular exon of FXR1 cause congenital multi-minicore myopathy in humans and mice. Additionally, we show that while Myf5-dependent depletion of all FXR1P isoforms is neonatal lethal, mice carrying mutations in exon-15 display non-lethal myopathies which vary in severity depending on the specific effect of each mutation on the protein.

Suggested Citation

  • María Cristina Estañ & Elisa Fernández-Núñez & Maha S. Zaki & María Isabel Esteban & Sandra Donkervoort & Cynthia Hawkins & José A. Caparros-Martin & Dimah Saade & Ying Hu & Véronique Bolduc & Katheri, 2019. "Recessive mutations in muscle-specific isoforms of FXR1 cause congenital multi-minicore myopathy," Nature Communications, Nature, vol. 10(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08548-9
    DOI: 10.1038/s41467-019-08548-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08548-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08548-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lance T. Denes & Chase P. Kelley & Eric T. Wang, 2021. "Microtubule-based transport is essential to distribute RNA and nascent protein in skeletal muscle," Nature Communications, Nature, vol. 12(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08548-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.