IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08540-3.html
   My bibliography  Save this article

Contemporary climatic analogs for 540 North American urban areas in the late 21st century

Author

Listed:
  • Matthew C. Fitzpatrick

    (University of Maryland Centre for Environmental Science, Appalachian Laboratory)

  • Robert R. Dunn

    (North Carolina State University Campus
    University of Copenhagen)

Abstract

A major challenge in articulating human dimensions of climate change lies in translating global climate forecasts into impact assessments that are intuitive to the public. Climate-analog mapping involves matching the expected future climate at a location (e.g., a person’s city of residence) with current climate of another, potentially familiar, location - thereby providing a more relatable, place-based assessment of climate change. For 540 North American urban areas, we used climate-analog mapping to identify the location that has a contemporary climate most similar to each urban area’s expected 2080’s climate. We show that climate of most urban areas will shift considerably and become either more akin to contemporary climates hundreds of kilometers away and mainly to the south or will have no modern equivalent. Combined with an interactive web application, we provide an intuitive means of raising public awareness of the implications of climate change for 250 million urban residents.

Suggested Citation

  • Matthew C. Fitzpatrick & Robert R. Dunn, 2019. "Contemporary climatic analogs for 540 North American urban areas in the late 21st century," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08540-3
    DOI: 10.1038/s41467-019-08540-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08540-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08540-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pezalla, Simon & Obringer, Renee, 2023. "Evaluating the household-level climate-electricity nexus across three cities through statistical learning techniques," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    2. Zoey R Werbin & Leila Heidari & Sarabeth Buckley & Paige Brochu & Lindsey J Butler & Catherine Connolly & Lucila Houttuijn Bloemendaal & Tempest D McCabe & Tara K Miller & Lucy R Hutyra, 2020. "A tree-planting decision support tool for urban heat mitigation," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-13, October.
    3. Rory G. J. Fitzpatrick & Douglas J. Parker & John H. Marsham & David P. Rowell & Lawrence S. Jackson & Declan Finney & Chetan Deva & Simon Tucker & Rachael Stratton, 2020. "How a typical West African day in the future-climate compares with current-climate conditions in a convection-permitting and parameterised convection climate model," Climatic Change, Springer, vol. 163(1), pages 267-296, November.
    4. Lynn Reuter & Alexander Graf & Klaus Goergen & Niels Döscher & Michael Leuchner, 2023. "Modelling climate analogue regions for a central European city," Climatic Change, Springer, vol. 176(5), pages 1-22, May.
    5. Jean-Francois Bastin & Emily Clark & Thomas Elliott & Simon Hart & Johan van den Hoogen & Iris Hordijk & Haozhi Ma & Sabiha Majumder & Gabriele Manoli & Julia Maschler & Lidong Mo & Devin Routh & Kail, 2019. "Understanding climate change from a global analysis of city analogues," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-13, July.
    6. Carcedo, Ana J.P. & Bastos, Leonardo M. & Yadav, Sudhir & Mondal, Manoranjan K. & Jagadish, S.V. Krishna & Kamal, Farhana A. & Sutradhar, Asish & Prasad, P.V. Vara & Ciampitti, Ignacio, 2022. "Assessing impact of salinity and climate scenarios on dry season field crops in the coastal region of Bangladesh," Agricultural Systems, Elsevier, vol. 200(C).
    7. Tobias Mette & Susanne Brandl & Christian Kölling, 2021. "Climate Analogues for Temperate European Forests to Raise Silvicultural Evidence Using Twin Regions," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    8. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08540-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.