Author
Listed:
- Meredith A. Redd
(University of Washington
University of Washington
University of Washington)
- Nicole Zeinstra
(University of Washington
University of Washington
University of Washington)
- Wan Qin
(University of Washington)
- Wei Wei
(University of Washington)
- Amy Martinson
(University of Washington
University of Washington
University of Washington)
- Yuliang Wang
(University of Washington
University of Washington)
- Ruikang K. Wang
(University of Washington)
- Charles E. Murry
(University of Washington
University of Washington
University of Washington
University of Washington)
- Ying Zheng
(University of Washington
University of Washington
University of Washington)
Abstract
Vascularization and efficient perfusion are long-standing challenges in cardiac tissue engineering. Here we report engineered perfusable microvascular constructs, wherein human embryonic stem cell-derived endothelial cells (hESC-ECs) are seeded both into patterned microchannels and the surrounding collagen matrix. In vitro, the hESC-ECs lining the luminal walls readily sprout and anastomose with de novo-formed endothelial tubes in the matrix under flow. When implanted on infarcted rat hearts, the perfusable microvessel grafts integrate with coronary vasculature to a greater degree than non-perfusable self-assembled constructs at 5 days post-implantation. Optical microangiography imaging reveal that perfusable grafts have 6-fold greater vascular density, 2.5-fold higher vascular velocities and >20-fold higher volumetric perfusion rates. Implantation of perfusable grafts containing additional hESC-derived cardiomyocytes show higher cardiomyocyte and vascular density. Thus, pre-patterned vascular networks enhance vascular remodeling and accelerate coronary perfusion, potentially supporting cardiac tissues after implantation. These findings should facilitate the next generation of cardiac tissue engineering design.
Suggested Citation
Meredith A. Redd & Nicole Zeinstra & Wan Qin & Wei Wei & Amy Martinson & Yuliang Wang & Ruikang K. Wang & Charles E. Murry & Ying Zheng, 2019.
"Patterned human microvascular grafts enable rapid vascularization and increase perfusion in infarcted rat hearts,"
Nature Communications, Nature, vol. 10(1), pages 1-14, December.
Handle:
RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08388-7
DOI: 10.1038/s41467-019-08388-7
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08388-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.