IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08383-y.html
   My bibliography  Save this article

High capacity silicon anodes enabled by MXene viscous aqueous ink

Author

Listed:
  • Chuanfang (John) Zhang

    (Trinity College Dublin
    Trinity College Dublin)

  • Sang-Hoon Park

    (Trinity College Dublin
    Trinity College Dublin)

  • Andrés Seral‐Ascaso

    (Trinity College Dublin
    Trinity College Dublin)

  • Sebastian Barwich

    (Trinity College Dublin
    Trinity College Dublin)

  • Niall McEvoy

    (Trinity College Dublin
    Trinity College Dublin)

  • Conor S. Boland

    (Trinity College Dublin
    Trinity College Dublin
    University of Sussex)

  • Jonathan N. Coleman

    (Trinity College Dublin
    Trinity College Dublin)

  • Yury Gogotsi

    (Drexel University)

  • Valeria Nicolosi

    (Trinity College Dublin
    Trinity College Dublin)

Abstract

The ever-increasing demands for advanced lithium-ion batteries have greatly stimulated the quest for robust electrodes with a high areal capacity. Producing thick electrodes from a high-performance active material would maximize this parameter. However, above a critical thickness, solution-processed films typically encounter electrical/mechanical problems, limiting the achievable areal capacity and rate performance as a result. Herein, we show that two-dimensional titanium carbide or carbonitride nanosheets, known as MXenes, can be used as a conductive binder for silicon electrodes produced by a simple and scalable slurry-casting technique without the need of any other additives. The nanosheets form a continuous metallic network, enable fast charge transport and provide good mechanical reinforcement for the thick electrode (up to 450 µm). Consequently, very high areal capacity anodes (up to 23.3 mAh cm−2) have been demonstrated.

Suggested Citation

  • Chuanfang (John) Zhang & Sang-Hoon Park & Andrés Seral‐Ascaso & Sebastian Barwich & Niall McEvoy & Conor S. Boland & Jonathan N. Coleman & Yury Gogotsi & Valeria Nicolosi, 2019. "High capacity silicon anodes enabled by MXene viscous aqueous ink," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08383-y
    DOI: 10.1038/s41467-019-08383-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08383-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08383-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ai-Min Li & Zeyi Wang & Travis P. Pollard & Weiran Zhang & Sha Tan & Tianyu Li & Chamithri Jayawardana & Sz-Chian Liou & Jiancun Rao & Brett L. Lucht & Enyuan Hu & Xiao-Qing Yang & Oleg Borodin & Chun, 2024. "High voltage electrolytes for lithium-ion batteries with micro-sized silicon anodes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Yuzhou Shao & Lusong Wei & Xinyue Wu & Chengmei Jiang & Yao Yao & Bo Peng & Han Chen & Jiangtao Huangfu & Yibin Ying & Chuanfang John Zhang & Jianfeng Ping, 2022. "Room-temperature high-precision printing of flexible wireless electronics based on MXene inks," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Ju-Hyoung Han & Shi-Hyun Seok & Young Ho Jin & Jaeeun Park & Yunju Lee & Haeng Un Yeo & Jong-Ho Back & Yeoseon Sim & Yujin Chae & Jaewon Wang & Geum-Yoon Oh & Wonjoo Lee & Sung Hyun Park & In-Cheol Ba, 2023. "Robust 2D layered MXene matrix–boron carbide hybrid films for neutron radiation shielding," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08383-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.