IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-018-08260-0.html
   My bibliography  Save this article

Chromosome-level assembly of the water buffalo genome surpasses human and goat genomes in sequence contiguity

Author

Listed:
  • Wai Yee Low

    (University of Adelaide)

  • Rick Tearle

    (University of Adelaide)

  • Derek M. Bickhart

    (Cell Wall Biology and Utilization Laboratory, ARS USDA)

  • Benjamin D. Rosen

    (Animal Genomics and Improvement Laboratory, ARS USDA)

  • Sarah B. Kingan

    (Pacific Biosciences)

  • Thomas Swale

    (Dovetail Genomics)

  • Françoise Thibaud-Nissen

    (National Institutes of Health)

  • Terence D. Murphy

    (National Institutes of Health)

  • Rachel Young

    (University of Edinburgh, Easter Bush)

  • Lucas Lefevre

    (University of Edinburgh, Easter Bush)

  • David A. Hume

    (Translational Research Institute, Woolloongabba)

  • Andrew Collins

    (University of Southampton)

  • Paolo Ajmone-Marsan

    (Università Cattolica del Sacro Cuore)

  • Timothy P. L. Smith

    (ARS USDA, Clay Center)

  • John L. Williams

    (University of Adelaide)

Abstract

Rapid innovation in sequencing technologies and improvement in assembly algorithms have enabled the creation of highly contiguous mammalian genomes. Here we report a chromosome-level assembly of the water buffalo (Bubalus bubalis) genome using single-molecule sequencing and chromatin conformation capture data. PacBio Sequel reads, with a mean length of 11.5 kb, helped to resolve repetitive elements and generate sequence contiguity. All five B. bubalis sub-metacentric chromosomes were correctly scaffolded with centromeres spanned. Although the index animal was partly inbred, 58% of the genome was haplotype-phased by FALCON-Unzip. This new reference genome improves the contig N50 of the previous short-read based buffalo assembly more than a thousand-fold and contains only 383 gaps. It surpasses the human and goat references in sequence contiguity and facilitates the annotation of hard to assemble gene clusters such as the major histocompatibility complex (MHC).

Suggested Citation

  • Wai Yee Low & Rick Tearle & Derek M. Bickhart & Benjamin D. Rosen & Sarah B. Kingan & Thomas Swale & Françoise Thibaud-Nissen & Terence D. Murphy & Rachel Young & Lucas Lefevre & David A. Hume & Andre, 2019. "Chromosome-level assembly of the water buffalo genome surpasses human and goat genomes in sequence contiguity," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08260-0
    DOI: 10.1038/s41467-018-08260-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-08260-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-08260-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ting-Ting Li & Tian Xia & Jia-Qi Wu & Hao Hong & Zhao-Lin Sun & Ming Wang & Fang-Rong Ding & Jing Wang & Shuai Jiang & Jin Li & Jie Pan & Guang Yang & Jian-Nan Feng & Yun-Ping Dai & Xue-Min Zhang & Ta, 2023. "De novo genome assembly depicts the immune genomic characteristics of cattle," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Xue Gao & Sheng Wang & Yan-Fen Wang & Shuang Li & Shi-Xin Wu & Rong-Ge Yan & Yi-Wen Zhang & Rui-Dong Wan & Zhen He & Ren-De Song & Xin-Quan Zhao & Dong-Dong Wu & Qi-En Yang, 2022. "Long read genome assemblies complemented by single cell RNA-sequencing reveal genetic and cellular mechanisms underlying the adaptive evolution of yak," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. A. Talenti & J. Powell & J. D. Hemmink & E. A. J. Cook & D. Wragg & S. Jayaraman & E. Paxton & C. Ezeasor & E. T. Obishakin & E. R. Agusi & A. Tijjani & W. Amanyire & D. Muhanguzi & K. Marshall & A. F, 2022. "A cattle graph genome incorporating global breed diversity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08260-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.