IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-018-08189-4.html
   My bibliography  Save this article

Changing temporal context in human temporal lobe promotes memory of distinct episodes

Author

Listed:
  • Mostafa M. El-Kalliny

    (National Institutes of Health)

  • John H. Wittig

    (National Institutes of Health)

  • Timothy C. Sheehan

    (University of California, San Diego)

  • Vishnu Sreekumar

    (National Institutes of Health)

  • Sara K. Inati

    (National Institutes of Health)

  • Kareem A. Zaghloul

    (National Institutes of Health)

Abstract

Memories of experiences that occur around the same time are linked together by a shared temporal context, represented by shared patterns of neural activity. However, shared temporal context may be problematic for selective retrieval of specific memories. Here, we examine intracranial EEG (iEEG) in the human temporal lobe as participants perform a verbal paired associates memory task that requires the encoding of distinct word pairs in memory. We find that the rate of change in patterns of low frequency (3–12 Hz) power distributed across the temporal lobe is significantly related to memory performance. We also find that exogenous electrical stimulation affects how quickly these neural representations of temporal context change with time, which directly affects the ability to successfully form memories for distinct items. Our results indicate that the ability to retrieve distinct episodic memories is related to how quickly neural representations of temporal context change over time during encoding.

Suggested Citation

  • Mostafa M. El-Kalliny & John H. Wittig & Timothy C. Sheehan & Vishnu Sreekumar & Sara K. Inati & Kareem A. Zaghloul, 2019. "Changing temporal context in human temporal lobe promotes memory of distinct episodes," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08189-4
    DOI: 10.1038/s41467-018-08189-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-08189-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-08189-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcel Bausch & Johannes Niediek & Thomas P. Reber & Sina Mackay & Jan Boström & Christian E. Elger & Florian Mormann, 2021. "Concept neurons in the human medial temporal lobe flexibly represent abstract relations between concepts," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Li Zheng & Zhiyao Gao & Andrew S. McAvan & Eve A. Isham & Arne D. Ekstrom, 2021. "Partially overlapping spatial environments trigger reinstatement in hippocampus and schema representations in prefrontal cortex," Nature Communications, Nature, vol. 12(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08189-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.