IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-018-08184-9.html
   My bibliography  Save this article

Feature-specific prediction errors and surprise across macaque fronto-striatal circuits

Author

Listed:
  • Mariann Oemisch

    (York University
    Yale University School of Medicine)

  • Stephanie Westendorff

    (York University
    University of Tübingen)

  • Marzyeh Azimi

    (York University)

  • Seyed Alireza Hassani

    (York University
    Vanderbilt University)

  • Salva Ardid

    (Boston University)

  • Paul Tiesinga

    (Radboud University Nijmegen)

  • Thilo Womelsdorf

    (York University
    Vanderbilt University)

Abstract

To adjust expectations efficiently, prediction errors need to be associated with the precise features that gave rise to the unexpected outcome, but this credit assignment may be problematic if stimuli differ on multiple dimensions and it is ambiguous which feature dimension caused the outcome. Here, we report a potential solution: neurons in four recorded areas of the anterior fronto-striatal networks encode prediction errors that are specific to feature values of different dimensions of attended multidimensional stimuli. The most ubiquitous prediction error occurred for the reward-relevant dimension. Feature-specific prediction error signals a) emerge on average shortly after non-specific prediction error signals, b) arise earliest in the anterior cingulate cortex and later in dorsolateral prefrontal cortex, caudate and ventral striatum, and c) contribute to feature-based stimulus selection after learning. Thus, a widely-distributed feature-specific eligibility trace may be used to update synaptic weights for improved feature-based attention.

Suggested Citation

  • Mariann Oemisch & Stephanie Westendorff & Marzyeh Azimi & Seyed Alireza Hassani & Salva Ardid & Paul Tiesinga & Thilo Womelsdorf, 2019. "Feature-specific prediction errors and surprise across macaque fronto-striatal circuits," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08184-9
    DOI: 10.1038/s41467-018-08184-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-08184-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-08184-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Ceccarelli & Lorenzo Ferrucci & Fabrizio Londei & Surabhi Ramawat & Emiliano Brunamonti & Aldo Genovesio, 2023. "Static and dynamic coding in distinct cell types during associative learning in the prefrontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Shiva Farashahi & Alireza Soltani, 2021. "Computational mechanisms of distributed value representations and mixed learning strategies," Nature Communications, Nature, vol. 12(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08184-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.