IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-018-08075-z.html
   My bibliography  Save this article

Higher order effects in organic LEDs with sub-bandgap turn-on

Author

Listed:
  • Sebastian Engmann

    (Theiss Research
    National Institute of Standards and Technology)

  • Adam J. Barito

    (National Institute of Standards and Technology)

  • Emily G. Bittle

    (National Institute of Standards and Technology)

  • Noel C. Giebink

    (The Pennsylvania State University, Electrical Engineering West)

  • Lee J. Richter

    (National Institute of Standards and Technology)

  • David J. Gundlach

    (National Institute of Standards and Technology)

Abstract

Spin-dependent nonlinear processes in organic materials such as singlet-fission and triplet-triplet annihilation could increase the performance for photovoltaics, detectors, and light emitting diodes. Rubrene/C60 light emitting diodes exhibit a distinct low voltage (half-bandgap) threshold for emission. Two origins for the low voltage turn-on have been proposed: (i) Auger assisted energy up-conversion, and (ii) triplet-triplet annihilation. We test these proposals by systematically altering the rubrene/C60 interface kinetics by introducing thin interlayers. Quantitative analysis of the unmodified rubrene/C60 device suggests that higher order processes can be ruled out as the origin of the sub-bandgap turn-on. Rather, band-to-band recombination is the most likely radiative recombination process. However, insertion of a bathocuproine layer yields a 3-fold increase in luminance compared to the unmodified device. This indicates that suppression of parasitic interface processes by judicious modification of the interface allows a triplet-triplet annihilation channel to be observed.

Suggested Citation

  • Sebastian Engmann & Adam J. Barito & Emily G. Bittle & Noel C. Giebink & Lee J. Richter & David J. Gundlach, 2019. "Higher order effects in organic LEDs with sub-bandgap turn-on," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08075-z
    DOI: 10.1038/s41467-018-08075-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-08075-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-08075-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seiichiro Izawa & Masahiro Morimoto & Keisuke Fujimoto & Koki Banno & Yutaka Majima & Masaki Takahashi & Shigeki Naka & Masahiro Hiramoto, 2023. "Blue organic light-emitting diode with a turn-on voltage of 1.47 V," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yaxiao Lian & Dongchen Lan & Shiyu Xing & Bingbing Guo & Zhixiang Ren & Runchen Lai & Chen Zou & Baodan Zhao & Richard H. Friend & Dawei Di, 2022. "Ultralow-voltage operation of light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08075-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.