IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-018-08060-6.html
   My bibliography  Save this article

Single spin localization and manipulation in graphene open-shell nanostructures

Author

Listed:
  • Jingcheng Li

    (CIC nanoGUNE)

  • Sofia Sanz

    (Donostia International Physics Center (DIPC))

  • Martina Corso

    (Donostia International Physics Center (DIPC)
    Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU))

  • Deung Jang Choi

    (Donostia International Physics Center (DIPC)
    Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU)
    Basque Foundation for Science)

  • Diego Peña

    (Universidade de Santiago de Compostela)

  • Thomas Frederiksen

    (Donostia International Physics Center (DIPC)
    Basque Foundation for Science)

  • Jose Ignacio Pascual

    (CIC nanoGUNE
    Basque Foundation for Science)

Abstract

Turning graphene magnetic is a promising challenge to make it an active material for spintronics. Predictions state that graphene structures with specific shapes can spontaneously develop magnetism driven by Coulomb repulsion of π-electrons, but its experimental verification is demanding. Here, we report on the observation and manipulation of individual magnetic moments in graphene open-shell nanostructures on a gold surface. Using scanning tunneling spectroscopy, we detect the presence of single electron spins localized around certain zigzag sites of the carbon backbone via the Kondo effect. We find near-by spins coupled into a singlet ground state and quantify their exchange interaction via singlet-triplet inelastic electron excitations. Theoretical simulations picture how electron correlations result in spin-polarized radical states with the experimentally observed spatial distributions. Extra hydrogen atoms bound to radical sites quench their magnetic moment and switch the spin of the nanostructure in half-integer amounts. Our work demonstrates the intrinsic π-paramagnetism of graphene nanostructures.

Suggested Citation

  • Jingcheng Li & Sofia Sanz & Martina Corso & Deung Jang Choi & Diego Peña & Thomas Frederiksen & Jose Ignacio Pascual, 2019. "Single spin localization and manipulation in graphene open-shell nanostructures," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08060-6
    DOI: 10.1038/s41467-018-08060-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-08060-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-08060-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jens Brede & Nestor Merino-Díez & Alejandro Berdonces-Layunta & Sofía Sanz & Amelia Domínguez-Celorrio & Jorge Lobo-Checa & Manuel Vilas-Varela & Diego Peña & Thomas Frederiksen & José I. Pascual & Di, 2023. "Detecting the spin-polarization of edge states in graphene nanoribbons," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Qingyang Du & Xuelei Su & Yufeng Liu & Yashi Jiang & Can Li & KaKing Yan & Ricardo Ortiz & Thomas Frederiksen & Shiyong Wang & Ping Yu, 2023. "Orbital-symmetry effects on magnetic exchange in open-shell nanographenes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08060-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.