IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-018-08048-2.html
   My bibliography  Save this article

Ultrafast data mining of molecular assemblies in multiplexed high-density super-resolution images

Author

Listed:
  • Yandong Yin

    (New York University School of Medicine)

  • Wei Ting Chelsea Lee

    (New York University School of Medicine)

  • Eli Rothenberg

    (New York University School of Medicine)

Abstract

Multicolor single-molecule localization super-resolution microscopy has enabled visualization of ultrafine spatial organizations of molecular assemblies within cells. Despite many efforts, current approaches for distinguishing and quantifying such organizations remain limited, especially when these are contained within densely distributed super-resolution data. In theory, higher-order correlation such as the Triple-Correlation function is capable of obtaining the spatial configuration of individual molecular assemblies masked within seemingly discorded dense distributions. However, due to their enormous computational cost such analyses are impractical, even for high-end computers. Here, we developed a fast algorithm for Triple-Correlation analyses of high-content multiplexed super-resolution data. This algorithm computes the probability density of all geometric configurations formed by every triple-wise single-molecule localization from three different channels, circumventing impractical 4D Fourier Transforms of the entire megapixel image. This algorithm achieves 102-folds enhancement in computational speed, allowing for high-throughput Triple-Correlation analyses and robust quantification of molecular complexes in multiplexed super-resolution microscopy.

Suggested Citation

  • Yandong Yin & Wei Ting Chelsea Lee & Eli Rothenberg, 2019. "Ultrafast data mining of molecular assemblies in multiplexed high-density super-resolution images," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08048-2
    DOI: 10.1038/s41467-018-08048-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-08048-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-08048-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sameera Vipat & Dipika Gupta & Sagun Jonchhe & Hele Anderspuk & Eli Rothenberg & Tatiana N. Moiseeva, 2022. "The non-catalytic role of DNA polymerase epsilon in replication initiation in human cells," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Aina Maria Mas & Enrique Goñi & Igor Ruiz de los Mozos & Aida Arcas & Luisa Statello & Jovanna González & Lorea Blázquez & Wei Ting Chelsea Lee & Dipika Gupta & Álvaro Sejas & Shoko Hoshina & Alexandr, 2023. "ORC1 binds to cis-transcribed RNAs for efficient activation of replication origins," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Kate E. Coleman & Yandong Yin & Sarah Kit Leng Lui & Sarah Keegan & David Fenyo & Duncan J. Smith & Eli Rothenberg & Tony T. Huang, 2022. "USP1-trapping lesions as a source of DNA replication stress and genomic instability," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Liana Goehring & Sarah Keegan & Sudipta Lahiri & Wenxin Xia & Michael Kong & Judit Jimenez-Sainz & Dipika Gupta & Ronny Drapkin & Ryan B. Jensen & Duncan J. Smith & Eli Rothenberg & David Fenyö & Tony, 2024. "Dormant origin firing promotes head-on transcription-replication conflicts at transcription termination sites in response to BRCA2 deficiency," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08048-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.