IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-018-08042-8.html
   My bibliography  Save this article

Mechano-chemical decomposition of organic friction modifiers with multiple reactive centres induces superlubricity of ta-C

Author

Listed:
  • Takuya Kuwahara

    (MicroTribology Center μTC)

  • Pedro A. Romero

    (MicroTribology Center μTC)

  • Stefan Makowski

    (Fraunhofer Institute for Material and Beam Technology IWS)

  • Volker Weihnacht

    (Fraunhofer Institute for Material and Beam Technology IWS)

  • Gianpietro Moras

    (MicroTribology Center μTC)

  • Michael Moseler

    (MicroTribology Center μTC
    University of Freiburg
    Freiburg Materials Research Center)

Abstract

Superlubricity of tetrahedral amorphous carbon (ta-C) coatings under boundary lubrication with organic friction modifiers is important for industrial applications, but the underlying mechanisms remain elusive. Here, combined experiments and simulations unveil a universal tribochemical mechanism leading to superlubricity of ta-C/ta-C tribopairs. Pin-on-disc sliding experiments show that ultra- and superlow friction with negligible wear can be achieved by lubrication with unsaturated fatty acids or glycerol, but not with saturated fatty acids and hydrocarbons. Atomistic simulations reveal that, due to the simultaneous presence of two reactive centers (carboxylic group and C=C double bond), unsaturated fatty acids can concurrently chemisorb on both ta-C surfaces and bridge the tribogap. Sliding-induced mechanical strain triggers a cascade of molecular fragmentation reactions releasing passivating hydroxyl, keto, epoxy, hydrogen and olefinic groups. Similarly, glycerol’s three hydroxyl groups react simultaneously with both ta-C surfaces, causing the molecule’s complete mechano-chemical fragmentation and formation of aromatic passivation layers with superlow friction.

Suggested Citation

  • Takuya Kuwahara & Pedro A. Romero & Stefan Makowski & Volker Weihnacht & Gianpietro Moras & Michael Moseler, 2019. "Mechano-chemical decomposition of organic friction modifiers with multiple reactive centres induces superlubricity of ta-C," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08042-8
    DOI: 10.1038/s41467-018-08042-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-08042-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-08042-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhanola, Anil & Khanna, Navneet & Gajrani, Kishor Kumar, 2022. "A critical review on liquid superlubricitive technology for attaining ultra-low friction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08042-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.