IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-018-07978-1.html
   My bibliography  Save this article

Low-frequency vibrational modes of stable glasses

Author

Listed:
  • Lijin Wang

    (Beijing Computational Science Research Center
    Colorado State University)

  • Andrea Ninarello

    (CNRS
    Piazzale A. Moro 2)

  • Pengfei Guan

    (Beijing Computational Science Research Center)

  • Ludovic Berthier

    (CNRS)

  • Grzegorz Szamel

    (Colorado State University)

  • Elijah Flenner

    (Colorado State University)

Abstract

Unusual features of the vibrational density of states D(ω) of glasses allow one to rationalize their peculiar low-temperature properties. Simulational studies of D(ω) have been restricted to studying poorly annealed glasses that may not be relevant to experiments. Here we report on D(ω) of zero-temperature glasses with kinetic stabilities ranging from poorly annealed to ultrastable glasses. For all preparations, the low-frequency part of D(ω) splits between extended and quasi-localized modes. Extended modes exhibit a boson peak crossing over to Debye behavior (Dex(ω) ~ ω2) at low-frequency, with a strong correlation between the two regimes. Quasi-localized modes obey Dloc(ω) ~ ω4, irrespective of the stability. The prefactor of this quartic law decreases with increasing stability, and the corresponding modes become more localized and sparser. Our work is the first numerical observation of quasi-localized modes in a regime relevant to experiments, and it establishes a direct connection between glasses’ stability and their soft vibrational modes

Suggested Citation

  • Lijin Wang & Andrea Ninarello & Pengfei Guan & Ludovic Berthier & Grzegorz Szamel & Elijah Flenner, 2019. "Low-frequency vibrational modes of stable glasses," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-07978-1
    DOI: 10.1038/s41467-018-07978-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07978-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07978-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding Xu & Shiyun Zhang & Hua Tong & Lijin Wang & Ning Xu, 2024. "Low-frequency vibrational density of states of ordinary and ultra-stable glasses," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Walter Schirmacher & Matteo Paoluzzi & Felix Cosmin Mocanu & Dmytro Khomenko & Grzegorz Szamel & Francesco Zamponi & Giancarlo Ruocco, 2024. "The nature of non-phononic excitations in disordered systems," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-07978-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.