Author
Listed:
- J. Gladrow
(Cavendish Laboratory, University of Cambridge)
- M. Ribezzi-Crivellari
(Laboratoire de Biochimie, UMR CBI 8231, ESPCI Paris, PSL Research University, 10 rue Vauquelin
University of Barcelona, C/Marti i Franques s/n)
- F. Ritort
(University of Barcelona, C/Marti i Franques s/n
CIBER-BBN de Bioingenieria, Biomateriales y Nanomedicina, Instituto de Salud Carlos III)
- U. F. Keyser
(Cavendish Laboratory, University of Cambridge)
Abstract
While thermal rates of state transitions in classical systems have been studied for almost a century, associated transition-path times have only recently received attention. Uphill and downhill transition paths between states at different free energies should be statistically indistinguishable. Here, we systematically investigate transition-path-time symmetry and report evidence of its breakdown on the molecular- and meso-scale out of equilibrium. In automated Brownian dynamics experiments, we establish first-passage-time symmetries of colloids driven by femtoNewton forces in holographically-created optical landscapes confined within microchannels. Conversely, we show that transitions which couple in a path-dependent manner to fluctuating forces exhibit asymmetry. We reproduce this asymmetry in folding transitions of DNA-hairpins driven out of equilibrium and suggest a topological mechanism of symmetry breakdown. Our results are relevant to measurements that capture a single coordinate in a multidimensional free energy landscape, as encountered in electrophysiology and single-molecule fluorescence experiments.
Suggested Citation
J. Gladrow & M. Ribezzi-Crivellari & F. Ritort & U. F. Keyser, 2019.
"Experimental evidence of symmetry breaking of transition-path times,"
Nature Communications, Nature, vol. 10(1), pages 1-9, December.
Handle:
RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-07873-9
DOI: 10.1038/s41467-018-07873-9
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-07873-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.