IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-018-07845-z.html
   My bibliography  Save this article

Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins

Author

Listed:
  • Philippe E. Mangeot

    (Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon)

  • Valérie Risson

    (Faculté de Médecine Lyon Est)

  • Floriane Fusil

    (Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon)

  • Aline Marnef

    (Université de Toulouse)

  • Emilie Laurent

    (Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon)

  • Juliana Blin

    (Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon)

  • Virginie Mournetas

    (Inserm)

  • Emmanuelle Massouridès

    (Inserm)

  • Thibault J. M. Sohier

    (Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon)

  • Antoine Corbin

    (Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon)

  • Fabien Aubé

    (Université Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1210)

  • Marie Teixeira

    (Université Lyon1, CNRS UMS3444 INSERM US8)

  • Christian Pinset

    (Inserm)

  • Laurent Schaeffer

    (Faculté de Médecine Lyon Est)

  • Gaëlle Legube

    (Université de Toulouse)

  • François-Loïc Cosset

    (Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon)

  • Els Verhoeyen

    (Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon
    Université Côte d’Azur, INSERM, C3M)

  • Théophile Ohlmann

    (Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon)

  • Emiliano P. Ricci

    (Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon
    Université Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1210)

Abstract

Programmable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into target cells can be technically challenging when working with primary cells or in vivo. Here, we use engineered murine leukemia virus-like particles loaded with Cas9-sgRNA ribonucleoproteins (Nanoblades) to induce efficient genome-editing in cell lines and primary cells including human induced pluripotent stem cells, human hematopoietic stem cells and mouse bone-marrow cells. Transgene-free Nanoblades are also capable of in vivo genome-editing in mouse embryos and in the liver of injected mice. Nanoblades can be complexed with donor DNA for “all-in-one” homology-directed repair or programmed with modified Cas9 variants to mediate transcriptional up-regulation of target genes. Nanoblades preparation process is simple, relatively inexpensive and can be easily implemented in any laboratory equipped for cellular biology.

Suggested Citation

  • Philippe E. Mangeot & Valérie Risson & Floriane Fusil & Aline Marnef & Emilie Laurent & Juliana Blin & Virginie Mournetas & Emmanuelle Massouridès & Thibault J. M. Sohier & Antoine Corbin & Fabien Aub, 2019. "Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-07845-z
    DOI: 10.1038/s41467-018-07845-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07845-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07845-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Zenke & Mauricio P. Sica & Florian Steinberg & Julia Braun & Alicia Zink & Alina Gavrilov & Alexander Hilger & Aditya Arra & Monika Brunner-Weinzierl & Roland Elling & Niklas Beyersdorf & Tim Lä, 2022. "Differential trafficking of ligands trogocytosed via CD28 versus CTLA4 promotes collective cellular control of co-stimulation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Daniel Strebinger & Chris J. Frangieh & Mirco J. Friedrich & Guilhem Faure & Rhiannon K. Macrae & Feng Zhang, 2023. "Cell type-specific delivery by modular envelope design," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Myung Chung & Katsutoshi Imanaka & Ziyan Huang & Akiyuki Watarai & Mu-Yun Wang & Kentaro Tao & Hirotaka Ejima & Tomomi Aida & Guoping Feng & Teruhiro Okuyama, 2024. "Conditional knockout of Shank3 in the ventral CA1 by quantitative in vivo genome-editing impairs social memory in mice," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-07845-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.