IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v9y2019i9d10.1038_s41558-019-0553-2.html
   My bibliography  Save this article

Emergence of anthropogenic signals in the ocean carbon cycle

Author

Listed:
  • Sarah Schlunegger

    (Program in Atmospheric and Oceanic Sciences, Princeton University)

  • Keith B. Rodgers

    (Center for Climate Physics, Institute for Basic Science
    Pusan National University)

  • Jorge L. Sarmiento

    (Program in Atmospheric and Oceanic Sciences, Princeton University)

  • Thomas L. Frölicher

    (Climate and Environmental Physics, Physics Institute, University of Bern
    Oeschger Centre for Climate Change Research, University of Bern)

  • John P. Dunne

    (NOAA Geophysical Fluid Dynamics Laboratory)

  • Masao Ishii

    (Meteorological Research Institute, Japan Meteorological Agency)

  • Richard Slater

    (Program in Atmospheric and Oceanic Sciences, Princeton University)

Abstract

The attribution of anthropogenically forced trends in the climate system requires an understanding of when and how such signals emerge from natural variability. We applied time-of-emergence diagnostics to a large ensemble of an Earth system model, which provides both a conceptual framework for interpreting the detectability of anthropogenic impacts in the ocean carbon cycle and observational sampling strategies required to achieve detection. We found emergence timescales that ranged from less than a decade to more than a century, a consequence of the time lag between the chemical and radiative impacts of rising atmospheric CO2 on the ocean. Processes sensitive to carbonate chemical changes emerge rapidly, such as the impacts of acidification on the calcium carbonate pump (10 years for the globally integrated signal and 9–18 years for regionally integrated signals) and the invasion flux of anthropogenic CO2 into the ocean (14 years globally and 13–26 years regionally). Processes sensitive to the ocean’s physical state, such as the soft-tissue pump, which depends on nutrients supplied through circulation, emerge decades later (23 years globally and 27–85 years regionally).

Suggested Citation

  • Sarah Schlunegger & Keith B. Rodgers & Jorge L. Sarmiento & Thomas L. Frölicher & John P. Dunne & Masao Ishii & Richard Slater, 2019. "Emergence of anthropogenic signals in the ocean carbon cycle," Nature Climate Change, Nature, vol. 9(9), pages 719-725, September.
  • Handle: RePEc:nat:natcli:v:9:y:2019:i:9:d:10.1038_s41558-019-0553-2
    DOI: 10.1038/s41558-019-0553-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-019-0553-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-019-0553-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pearse J. Buchanan & Olivier Aumont & Laurent Bopp & Claire Mahaffey & Alessandro Tagliabue, 2021. "Impact of intensifying nitrogen limitation on ocean net primary production is fingerprinted by nitrogen isotopes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Miho Ishizu & Yasumasa Miyazawa & Xinyu Guo, 2021. "Long-term variations in ocean acidification indices in the Northwest Pacific from 1993 to 2018," Climatic Change, Springer, vol. 168(3), pages 1-20, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:9:y:2019:i:9:d:10.1038_s41558-019-0553-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.