IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v9y2019i8d10.1038_s41558-019-0529-2.html
   My bibliography  Save this article

Global loss of climate connectivity in tropical forests

Author

Listed:
  • Rebecca A. Senior

    (University of Sheffield
    Princeton University)

  • Jane K. Hill

    (University of York)

  • David P. Edwards

    (University of Sheffield)

Abstract

Range shifts are a crucial mechanism enabling species to avoid extinction under climate change1,2. The majority of terrestrial biodiversity is concentrated in the tropics3, including species considered most vulnerable to climate warming4, but extensive and ongoing deforestation of tropical forests is likely to impede range shifts5,6. We conduct a global assessment of the potential for tropical species to reach analogous future climates—‘climate connectivity’—and empirically test how this has changed in response to deforestation between 2000 and 2012. We find that over 62% of tropical forest area (~10 million km2) is already incapable of facilitating range shifts to analogous future climates. In just 12 years, continued deforestation has caused a loss of climate connectivity for over 27% of surviving tropical forest, with accelerating declines in connectivity as forest loss increased. On average, if species’ ranges shift as far down climate gradients as permitted by existing forest connectivity, by 2070 they would still experience 0.77 °C of warming under the least severe climate warming scenario and up to 2.6 °C warming for the most severe scenario. Limiting further forest loss and focusing the global restoration agenda towards creating climate corridors are global priorities for improving resilience of tropical forest biotas under climate change.

Suggested Citation

  • Rebecca A. Senior & Jane K. Hill & David P. Edwards, 2019. "Global loss of climate connectivity in tropical forests," Nature Climate Change, Nature, vol. 9(8), pages 623-626, August.
  • Handle: RePEc:nat:natcli:v:9:y:2019:i:8:d:10.1038_s41558-019-0529-2
    DOI: 10.1038/s41558-019-0529-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-019-0529-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-019-0529-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:9:y:2019:i:8:d:10.1038_s41558-019-0529-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.