IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v9y2019i2d10.1038_s41558-018-0389-1.html
   My bibliography  Save this article

Physiology and iron modulate diverse responses of diatoms to a warming Southern Ocean

Author

Listed:
  • Philip W. Boyd

    (University of Tasmania
    University of Tasmania)

Abstract

Climate change-mediated alteration of Southern Ocean primary productivity is projected to have biogeochemical ramifications regionally, and globally due to altered northward nutrient supply1,2. Laboratory manipulation studies that investigated the influence of the main drivers (CO2, light, nutrients, temperature and iron) on Southern Ocean diatoms revealed that temperature and iron exert major controls on growth under year 2100 conditions3,4. However, detailed physiological studies, targeting temperature and iron, are required to improve our mechanistic understanding of future diatom responses. Here, I show that thermal performance curves of bloom-forming polar species are more diverse than previously shown5, with the optimum temperature for growth (Topt) ranging from 5–16 °C (the annual temperature range is −1–8 °C). Furthermore, iron deficiency probably decreases polar diatom Topt and Tmax (the upper bound for growth), as recently revealed for macronutrients and temperate phytoplankton6. Together, this diversity of thermal performance curves and the physiological interplay between iron and temperature may alter the diatom community composition. Topt will be exceeded during 2100 summer low iron/warmer conditions, tipping some species close or beyond Tmax, but giving others a distinct physiological advantage. Future polar conditions will enhance primary productivity2–4, but will also probably cause floristic shifts, such that the biogeochemical roles and elemental stoichiometry of dominant diatom species will alter the polar biogeochemistry and northwards nutrient supply.

Suggested Citation

  • Philip W. Boyd, 2019. "Physiology and iron modulate diverse responses of diatoms to a warming Southern Ocean," Nature Climate Change, Nature, vol. 9(2), pages 148-152, February.
  • Handle: RePEc:nat:natcli:v:9:y:2019:i:2:d:10.1038_s41558-018-0389-1
    DOI: 10.1038/s41558-018-0389-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-018-0389-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-018-0389-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. I. Anderson & A. D. Barton & S. Clayton & S. Dutkiewicz & T. A. Rynearson, 2021. "Marine phytoplankton functional types exhibit diverse responses to thermal change," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:9:y:2019:i:2:d:10.1038_s41558-018-0389-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.