IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v9y2019i11d10.1038_s41558-019-0603-9.html
   My bibliography  Save this article

Enhanced equatorial warming causes deep-tropical contraction and subtropical monsoon shift

Author

Listed:
  • Wenyu Zhou

    (Lawrence Berkeley National Laboratory, Berkeley)

  • Shang-Ping Xie

    (University of California, San Diego, La Jolla)

  • Da Yang

    (Lawrence Berkeley National Laboratory, Berkeley
    University of California, Davis, Davis)

Abstract

Under anthropogenic warming, deep-tropical ascent of the intertropical convergence zone (ITCZ) is projected to contract equatorward1–3 while subtropical descent associated with the Hadley cell edge is predicted to expand poleward4. These changes have important implications for regional climate2,5–7, but their mechanisms are not well understood. Here we reveal a key role of enhanced equatorial surface warming (EEW) in driving the deep-tropical contraction and modulating the Hadley expansion. By shifting the seasonally warmed sea surface temperature equatorward, EEW reduces the meridional migration of the seasonal ITCZ and causes an annual-mean deep-tropical contraction. This process further contracts the subtropical circulation, as seen during El Niño, and counteracts the Hadley expansion caused by the global-scale warming. The EEW-induced contraction even dominates in the Northern Hemisphere early summer (June–July), when atmospheric circulation responses to the global-scale warming are weak8. Regionally, this alters the East Asian summer monsoon, shifting both the subtropical jet and Meiyu–Baiu rainband equatorward. Among models in Phase 5 of the Coupled Model Intercomparison Project9, the degrees of the equatorward shift in the ITCZ, the early-summer subtropical circulation and the East Asian summer monsoon are correlated with EEW. Our results suggest that a better constraint on EEW is critical for accurate projection of tropical and subtropical climate change.

Suggested Citation

  • Wenyu Zhou & Shang-Ping Xie & Da Yang, 2019. "Enhanced equatorial warming causes deep-tropical contraction and subtropical monsoon shift," Nature Climate Change, Nature, vol. 9(11), pages 834-839, November.
  • Handle: RePEc:nat:natcli:v:9:y:2019:i:11:d:10.1038_s41558-019-0603-9
    DOI: 10.1038/s41558-019-0603-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-019-0603-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-019-0603-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiping Yang & Lanlan Zhang & Liang Yi & Fuchang Zhong & Zhengyao Lu & Sui Wan & Yan Du & Rong Xiang, 2023. "A contracting Intertropical Convergence Zone during the Early Heinrich Stadial 1," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Ruyu Gan & Qi Liu & Gang Huang & Kaiming Hu & Xichen Li, 2023. "Greenhouse warming and internal variability increase extreme and central Pacific El Niño frequency since 1980," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Gan Zhang, 2023. "Warming-induced contraction of tropical convection delays and reduces tropical cyclone formation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Omid Alizadeh & Morteza Babaei, 2022. "Seasonally dependent precipitation changes and their driving mechanisms in Southwest Asia," Climatic Change, Springer, vol. 171(3), pages 1-16, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:9:y:2019:i:11:d:10.1038_s41558-019-0603-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.