Author
Listed:
- Yang Chen
(University of California)
- Douglas C. Morton
(NASA Goddard Space Flight Center)
- Niels Andela
(NASA Goddard Space Flight Center)
- Guido R. van der Werf
(Vrije Universiteit Amsterdam)
- Louis Giglio
(University of Maryland)
- James T. Randerson
(University of California)
Abstract
The El Niño/Southern Oscillation (ENSO) has a pronounced influence on year-to-year variations in climate 1 . The response of fires to this forcing 2 is complex and has not been evaluated systematically across different continents. Here we use satellite data to create a climatology of burned-area and fire-emissions responses, drawing on six El Niño and six La Niña events during 1997–2016. On average, reductions in precipitation and terrestrial water storage increased fire emissions in pan-tropical forests by 133% during and following El Niño as compared with La Niña. Fires peaked in equatorial Asia early in the ENSO cycle when El Niño was strengthening (Aug–Oct), before moving to southeast Asia and northern South America (Jan–Apr), Central America (Mar–May) and the southern Amazon (Jul–Oct) during the following year. Large decreases in fire occurred across northern Australia during Sep–Oct of the second year from a reduced fuel availability. Satellite observations of aerosols and carbon monoxide provided independent confirmation of the spatiotemporal evolution of fire anomalies. The predictable cascade of fire across different tropical continents described here highlights an important time delay in the Earth system’s response to precipitation redistribution. These observations help to explain why the growth rate of atmospheric CO2 increases during El Niño 3 and may contribute to improved seasonal fire forecasts.
Suggested Citation
Yang Chen & Douglas C. Morton & Niels Andela & Guido R. van der Werf & Louis Giglio & James T. Randerson, 2017.
"A pan-tropical cascade of fire driven by El Niño/Southern Oscillation,"
Nature Climate Change, Nature, vol. 7(12), pages 906-911, December.
Handle:
RePEc:nat:natcli:v:7:y:2017:i:12:d:10.1038_s41558-017-0014-8
DOI: 10.1038/s41558-017-0014-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:7:y:2017:i:12:d:10.1038_s41558-017-0014-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.