IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v4y2014i3d10.1038_nclimate2120.html
   My bibliography  Save this article

Taming hurricanes with arrays of offshore wind turbines

Author

Listed:
  • Mark Z. Jacobson

    (Stanford University, Stanford California 94305-4020, USA)

  • Cristina L. Archer

    (College of Earth, Ocean, and Environment, University of Delaware)

  • Willett Kempton

    (College of Earth, Ocean, and Environment, University of Delaware)

Abstract

Damage from hurricanes is increasing in many coastal regions worldwide. Research now shows that large wind-turbine arrays can significantly diminish peak near-surface hurricane wind speeds and storm surge. The net cost of turbine arrays is less than that of today’s fossil-fuel electricity generation and also than that of sea walls used to avoid storm-surge damage.

Suggested Citation

  • Mark Z. Jacobson & Cristina L. Archer & Willett Kempton, 2014. "Taming hurricanes with arrays of offshore wind turbines," Nature Climate Change, Nature, vol. 4(3), pages 195-200, March.
  • Handle: RePEc:nat:natcli:v:4:y:2014:i:3:d:10.1038_nclimate2120
    DOI: 10.1038/nclimate2120
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate2120
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate2120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Momeni, Farhang & Sabzpoushan, Seyedali & Valizadeh, Reza & Morad, Mohammad Reza & Liu, Xun & Ni, Jun, 2019. "Plant leaf-mimetic smart wind turbine blades by 4D printing," Renewable Energy, Elsevier, vol. 130(C), pages 329-351.
    2. Nagel, T. & Chauchat, J. & Wirth, A. & Bonamy, C., 2018. "On the multi-scale interactions between an offshore-wind-turbine wake and the ocean-sediment dynamics in an idealized framework – A numerical investigation," Renewable Energy, Elsevier, vol. 115(C), pages 783-796.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:4:y:2014:i:3:d:10.1038_nclimate2120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.