IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v13y2023i5d10.1038_s41558-023-01627-2.html
   My bibliography  Save this article

Increasing the number of stressors reduces soil ecosystem services worldwide

Author

Listed:
  • Matthias C. Rillig

    (Freie Universität Berlin)

  • Marcel G. A. Heijden

    (Agroscope
    University of Zurich)

  • Miguel Berdugo

    (ETH Zurich
    Complutense University of Madrid)

  • Yu-Rong Liu

    (Huazhong Agricultural University)

  • Judith Riedo

    (Agroscope)

  • Carlos Sanz-Lazaro

    (Universidad de Alicante
    University of Alicante)

  • Eduardo Moreno-Jiménez

    (Freie Universität Berlin
    Universidad Autónoma de Madrid)

  • Ferran Romero

    (Agroscope)

  • Leho Tedersoo

    (University of Tartu)

  • Manuel Delgado-Baquerizo

    (Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC
    Universidad Pablo de Olavide)

Abstract

Increasing the number of environmental stressors could decrease ecosystem functioning in soils. Yet this relationship has not been globally assessed outside laboratory experiments. Here, using two independent global standardized field surveys, and a range of natural and human factors, we test the relationship between the number of environmental stressors exceeding different critical thresholds and the maintenance of multiple ecosystem services across biomes. Our analysis shows that having multiple stressors, from medium levels (>50%), negatively and significantly correlates with impacts on ecosystem services and that having multiple stressors crossing a high-level critical threshold (over 75% of maximum observed levels) reduces soil biodiversity and functioning globally. The number of environmental stressors exceeding the >75% threshold was consistently seen as an important predictor of multiple ecosystem services, therefore improving prediction of ecosystem functioning. Our findings highlight the need to reduce the dimensionality of the human footprint on ecosystems to conserve biodiversity and function.

Suggested Citation

  • Matthias C. Rillig & Marcel G. A. Heijden & Miguel Berdugo & Yu-Rong Liu & Judith Riedo & Carlos Sanz-Lazaro & Eduardo Moreno-Jiménez & Ferran Romero & Leho Tedersoo & Manuel Delgado-Baquerizo, 2023. "Increasing the number of stressors reduces soil ecosystem services worldwide," Nature Climate Change, Nature, vol. 13(5), pages 478-483, May.
  • Handle: RePEc:nat:natcli:v:13:y:2023:i:5:d:10.1038_s41558-023-01627-2
    DOI: 10.1038/s41558-023-01627-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-023-01627-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-023-01627-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi-Fei Wang & Yan-Jie Liu & Yan-Mei Fu & Jia-Yang Xu & Tian-Lun Zhang & Hui-Ling Cui & Min Qiao & Matthias C. Rillig & Yong-Guan Zhu & Dong Zhu, 2024. "Microplastic diversity increases the abundance of antibiotic resistance genes in soil," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Tessa Camenzind & Carlos A. Aguilar-Trigueros & Stefan Hempel & Anika Lehmann & Milos Bielcik & Diana R. Andrade-Linares & Joana Bergmann & Jeane Cruz & Jessie Gawronski & Polina Golubeva & Heike Hasl, 2024. "Towards establishing a fungal economics spectrum in soil saprobic fungi," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Yuxi Guo & Elizabeth H. Boughton & Stephanie Bohlman & Carl Bernacchi & Patrick J. Bohlen & Raoul Boughton & Evan DeLucia & John E. Fauth & Nuria Gomez-Casanovas & David G. Jenkins & Gene Lollis & Rya, 2023. "Grassland intensification effects cascade to alter multifunctionality of wetlands within metaecosystems," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:13:y:2023:i:5:d:10.1038_s41558-023-01627-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.