IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v12y2022i8d10.1038_s41558-022-01424-3.html
   My bibliography  Save this article

Poleward shift of Circumpolar Deep Water threatens the East Antarctic Ice Sheet

Author

Listed:
  • Laura Herraiz-Borreguero

    (Commonwealth Scientific and Industrial Research Organization Oceans and Atmosphere and Centre for Southern Hemisphere Oceans Research
    University of Tasmania)

  • Alberto C. Naveira Garabato

    (University of Southampton)

Abstract

Future sea-level rise projections carry large uncertainties, mainly driven by the unknown response of the Antarctic Ice Sheet to climate change. During the past four decades, the contribution of the East Antarctic Ice Sheet to sea-level rise has increased. However, unlike for West Antarctica, the causes of East Antarctic ice-mass loss are largely unexplored. Here, using oceanographic observations off East Antarctica (80–160° E) we show that mid-depth Circumpolar Deep Water has warmed by 0.8–2.0 °C along the continental slope between 1930–1990 and 2010–2018. Our results indicate that this warming may be implicated in East Antarctic ice-mass loss and coastal water-mass reorganization. Further, it is associated with an interdecadal, summer-focused poleward shift of the westerlies over the Southern Ocean. Since this shift is predicted to persist into the twenty-first century, the oceanic heat supply to East Antarctica may continue to intensify, threatening the ice sheet’s future stability.

Suggested Citation

  • Laura Herraiz-Borreguero & Alberto C. Naveira Garabato, 2022. "Poleward shift of Circumpolar Deep Water threatens the East Antarctic Ice Sheet," Nature Climate Change, Nature, vol. 12(8), pages 728-734, August.
  • Handle: RePEc:nat:natcli:v:12:y:2022:i:8:d:10.1038_s41558-022-01424-3
    DOI: 10.1038/s41558-022-01424-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-022-01424-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-022-01424-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James R. Jordan & B. W. J. Miles & G. H. Gudmundsson & S. S. R. Jamieson & A. Jenkins & C. R. Stokes, 2023. "Increased warm water intrusions could cause mass loss in East Antarctica during the next 200 years," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Daisuke Hirano & Takeshi Tamura & Kazuya Kusahara & Masakazu Fujii & Kaihe Yamazaki & Yoshihiro Nakayama & Kazuya Ono & Takuya Itaki & Yuichi Aoyama & Daisuke Simizu & Kohei Mizobata & Kay I. Ohshima , 2023. "On-shelf circulation of warm water toward the Totten Ice Shelf in East Antarctica," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Tao Li & Laura F. Robinson & Graeme A. MacGilchrist & Tianyu Chen & Joseph A. Stewart & Andrea Burke & Maoyu Wang & Gaojun Li & Jun Chen & James W. B. Rae, 2023. "Enhanced subglacial discharge from Antarctica during meltwater pulse 1A," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:12:y:2022:i:8:d:10.1038_s41558-022-01424-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.