IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v12y2022i1d10.1038_s41558-021-01224-1.html
   My bibliography  Save this article

Observed increases in extreme fire weather driven by atmospheric humidity and temperature

Author

Listed:
  • Piyush Jain

    (Northern Forestry Centre)

  • Dante Castellanos-Acuna

    (University of Alberta)

  • Sean C. P. Coogan

    (University of Alberta)

  • John T. Abatzoglou

    (University of California)

  • Mike D. Flannigan

    (University of Alberta)

Abstract

Recent increases in regional wildfire activity have been linked to climate change. Here, we analyse trends in observed global extreme fire weather and their meteorological drivers from 1979 to 2020 using the ERA5 reanalysis. Trends in annual extreme (95th percentile) values of the fire weather index (FWI95), initial spread index (ISI95) and vapour pressure deficit (VPD95) varied regionally, with global increases in mean values of 14, 12 and 12%, respectively. Significant increases occurred over a quarter to almost half of the global burnable land mass. Decreasing relative humidity was a driver of over three-quarters of significant increases in FWI95 and ISI95, while increasing temperature was a driver for 40% of significant trends. Trends in VPD95 were predominantly associated with increasing temperature. These trends are likely to continue, as climate change projections suggest global decreases in relative humidity and increases in temperature that may increase future fire risk where fuels remain abundant.

Suggested Citation

  • Piyush Jain & Dante Castellanos-Acuna & Sean C. P. Coogan & John T. Abatzoglou & Mike D. Flannigan, 2022. "Observed increases in extreme fire weather driven by atmospheric humidity and temperature," Nature Climate Change, Nature, vol. 12(1), pages 63-70, January.
  • Handle: RePEc:nat:natcli:v:12:y:2022:i:1:d:10.1038_s41558-021-01224-1
    DOI: 10.1038/s41558-021-01224-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-021-01224-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-021-01224-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michele Salis & Liliana Del Giudice & Roghayeh Jahdi & Fermin Alcasena-Urdiroz & Carla Scarpa & Grazia Pellizzaro & Valentina Bacciu & Matilde Schirru & Andrea Ventura & Marcello Casula & Fabrizio Ped, 2022. "Spatial Patterns and Intensity of Land Abandonment Drive Wildfire Hazard and Likelihood in Mediterranean Agropastoral Areas," Land, MDPI, vol. 11(11), pages 1-22, October.
    2. Hyo-Jeong Kim & Jin-Soo Kim & Soon-Il An & Jongsoo Shin & Ji-Hoon Oh & Jong-Seong Kug, 2024. "Pervasive fire danger continued under a negative emission scenario," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:12:y:2022:i:1:d:10.1038_s41558-021-01224-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.