IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v12y2022i12d10.1038_s41558-022-01537-9.html
   My bibliography  Save this article

Adaptive emission reduction approach to reach any global warming target

Author

Listed:
  • Jens Terhaar

    (University of Bern
    University of Bern)

  • Thomas L. Frölicher

    (University of Bern
    University of Bern)

  • Mathias T. Aschwanden

    (University of Bern
    University of Bern)

  • Pierre Friedlingstein

    (University of Exeter
    Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, CNRS-ENS-UPMC-X)

  • Fortunat Joos

    (University of Bern
    University of Bern)

Abstract

The parties of the Paris Agreement agreed to keep global warming well below 2 °C and pursue efforts to limit it to 1.5 °C. A global stocktake is instituted to assess the necessary emissions reductions every 5 years. Here we propose an adaptive approach to successively quantify global emissions reductions that allow reaching a temperature target within ±0.2 °C, solely based on regularly updated observations of past temperatures, radiative forcing and emissions statistics, and not on climate model projections. Testing this approach using an Earth system model of intermediate complexity demonstrates that defined targets can be reached following a smooth emissions pathway. Its adaptive nature makes the approach robust against inherent uncertainties in observational records, climate sensitivity, effectiveness of emissions reduction implementations and the metric to estimate CO2 equivalent emissions. This approach allows developing emission trajectories for CO2, CH4, N2O and other agents that iteratively adapt to meet a chosen temperature target.

Suggested Citation

  • Jens Terhaar & Thomas L. Frölicher & Mathias T. Aschwanden & Pierre Friedlingstein & Fortunat Joos, 2022. "Adaptive emission reduction approach to reach any global warming target," Nature Climate Change, Nature, vol. 12(12), pages 1136-1142, December.
  • Handle: RePEc:nat:natcli:v:12:y:2022:i:12:d:10.1038_s41558-022-01537-9
    DOI: 10.1038/s41558-022-01537-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-022-01537-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-022-01537-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Chen & Tao Tao & Jiaxin Zhou & Helong Yu & Hongliang Guo & Hongbing Chen, 2023. "Simulation and Prediction of Greenhouse Gas Emissions from Beef Cattle," Sustainability, MDPI, vol. 15(15), pages 1-14, August.
    2. Liang, Longwu & Chen, Mingxing & Zhang, Xiaoping & Sun, Mingxing, 2024. "Understanding changes in household carbon footprint during rapid urbanization in China," Energy Policy, Elsevier, vol. 185(C).
    3. Ajay Gambhir & Shivika Mittal & Robin D. Lamboll & Neil Grant & Dan Bernie & Laila Gohar & Adam Hawkes & Alexandre Köberle & Joeri Rogelj & Jason A. Lowe, 2023. "Adjusting 1.5 degree C climate change mitigation pathways in light of adverse new information," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:12:y:2022:i:12:d:10.1038_s41558-022-01537-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.