IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v11y2021i5d10.1038_s41558-021-01028-3.html
   My bibliography  Save this article

Increasing risk of glacial lake outburst floods from future Third Pole deglaciation

Author

Listed:
  • Guoxiong Zheng

    (Chinese Academy of Sciences
    University of Geneva
    University of Chinese Academy of Sciences)

  • Simon Keith Allen

    (University of Geneva
    University of Zurich)

  • Anming Bao

    (Chinese Academy of Sciences
    CAS-HEC)

  • Juan Antonio Ballesteros-Cánovas

    (University of Geneva
    University of Geneva)

  • Matthias Huss

    (ETH Zurich
    Swiss Federal Institute for Forest Snow and Landscape Research (WSL)
    University of Fribourg)

  • Guoqing Zhang

    (Chinese Academy of Sciences
    CAS Center for Excellence in Tibetan Plateau Earth Sciences)

  • Junli Li

    (Chinese Academy of Sciences)

  • Ye Yuan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Liangliang Jiang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Tao Yu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Wenfeng Chen

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Markus Stoffel

    (University of Geneva
    University of Geneva
    University of Geneva)

Abstract

Warming on Earth’s Third Pole is leading to rapid loss of ice and the formation and expansion of glacial lakes, posing a severe threat to downstream communities. Here we provide a holistic assessment of past evolution, present state and modelled future change of glacial lakes and related glacial lake outburst flood (GLOF) risk across the Third Pole. We show that the highest GLOF risk is at present centred in the eastern Himalaya, where the current risk level is at least twice that in adjacent regions. In the future, GLOF risk will potentially almost triple as a consequence of further lake development, and additional hotspots will emerge to the west, including within transboundary regions. With apparent increases in GLOF risk already anticipated by the mid-twenty-first century in some regions, the results highlight the urgent need for forward-looking, collaborative, long-term approaches to mitigate future impacts and enhance sustainable development across the Third Pole.

Suggested Citation

  • Guoxiong Zheng & Simon Keith Allen & Anming Bao & Juan Antonio Ballesteros-Cánovas & Matthias Huss & Guoqing Zhang & Junli Li & Ye Yuan & Liangliang Jiang & Tao Yu & Wenfeng Chen & Markus Stoffel, 2021. "Increasing risk of glacial lake outburst floods from future Third Pole deglaciation," Nature Climate Change, Nature, vol. 11(5), pages 411-417, May.
  • Handle: RePEc:nat:natcli:v:11:y:2021:i:5:d:10.1038_s41558-021-01028-3
    DOI: 10.1038/s41558-021-01028-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-021-01028-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-021-01028-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Munkhnasan Lamchin & Woo-Kyun Lee & Sonam Wangyel Wang, 2022. "Multi-Temporal Analysis of Past and Future Land-Cover Changes of the Third Pole," Land, MDPI, vol. 11(12), pages 1-19, December.
    2. Xuehui Pi & Qiuqi Luo & Lian Feng & Yang Xu & Jing Tang & Xiuyu Liang & Enze Ma & Ran Cheng & Rasmus Fensholt & Martin Brandt & Xiaobin Cai & Luke Gibson & Junguo Liu & Chunmiao Zheng & Weifeng Li & B, 2022. "Mapping global lake dynamics reveals the emerging roles of small lakes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Yanjun Che & Shijin Wang & Yanqiang Wei & Tao Pu & Xinggang Ma, 2022. "Rapid changes to glaciers increased the outburst flood risk in Guangxieco Proglacial Lake in the Kangri Karpo Mountains, Southeast Qinghai-Tibetan Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2163-2184, February.
    4. Xiang Wang & Guo Chen & Xiaoai Dai & Jingjing Zhao & Xian Liu & Yu Gao & Junmin Zhang & Yongjun Chen & Xiaozhen Li & Wenyi Qin & Peng Wang, 2022. "Improved Process Management of Glacial Lake Outburst Flood Hazards by Integrating Modular Monitoring, Assessment, and Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2343-2358, May.
    5. Caroline Taylor & Tom R. Robinson & Stuart Dunning & J. Rachel Carr & Matthew Westoby, 2023. "Glacial lake outburst floods threaten millions globally," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Naveed Ahmed & Lianqi Zhu & Genxu Wang & Oluwafemi E. Adeyeri & Suraj Shah & Shahid Ali & Hero Marhaento & Sarfraz Munir, 2023. "Occurrence and Distribution of Long-Term Variability in Precipitation Classes in the Source Region of the Yangtze River," Sustainability, MDPI, vol. 15(7), pages 1-15, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:11:y:2021:i:5:d:10.1038_s41558-021-01028-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.