IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v11y2021i10d10.1038_s41558-021-01161-z.html
   My bibliography  Save this article

Prioritizing forestation based on biogeochemical and local biogeophysical impacts

Author

Listed:
  • Michael G. Windisch

    (Institute for Atmospheric and Climate Science, ETH Zurich
    Potsdam Institute for Climate Impact Research
    Humboldt-Universität zu Berlin)

  • Edouard L. Davin

    (Institute for Atmospheric and Climate Science, ETH Zurich
    University of Bern)

  • Sonia I. Seneviratne

    (Institute for Atmospheric and Climate Science, ETH Zurich)

Abstract

Reforestation and afforestation is expected to achieve a quarter of all emission reduction pledged under the Paris Agreement. Trees store carbon in biomass and soil but also alter the surface energy balance, warming or cooling the local climate. Mitigation scenarios and policies often neglect these biogeophysical (BGP) effects. Here we combine observational BGP datasets with carbon uptake or emission data to assess the end-of-century mitigation potential of forestation. Forestation and conservation of tropical forests achieve the highest climate benefit at 732.12 tCO2e ha–1. Higher-latitude forests warm the local winter climate, affecting 73.7% of temperate forests. Almost a third (29.8%) of forests above 56° N induce net winter warming if only their biomass is considered. Including soil carbon reduces the net warming area to 6.8% but comes with high uncertainty (2.9–42.0%). Our findings emphasize the necessity to conserve and re-establish tropical forests and consider BGP effects in policy scenarios.

Suggested Citation

  • Michael G. Windisch & Edouard L. Davin & Sonia I. Seneviratne, 2021. "Prioritizing forestation based on biogeochemical and local biogeophysical impacts," Nature Climate Change, Nature, vol. 11(10), pages 867-871, October.
  • Handle: RePEc:nat:natcli:v:11:y:2021:i:10:d:10.1038_s41558-021-01161-z
    DOI: 10.1038/s41558-021-01161-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-021-01161-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-021-01161-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Zhao & Bryan K. Mignone & Marshall A. Wise & Haewon C. McJeon, 2024. "Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Yitao Li & Zhao-Liang Li & Hua Wu & Chenghu Zhou & Xiangyang Liu & Pei Leng & Peng Yang & Wenbin Wu & Ronglin Tang & Guo-Fei Shang & Lingling Ma, 2023. "Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Jun Ge & Qi Liu & Beilei Zan & Zhiqiang Lin & Sha Lu & Bo Qiu & Weidong Guo, 2022. "Deforestation intensifies daily temperature variability in the northern extratropics," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Shu Liu & Yong Wang & Guang J. Zhang & Linyi Wei & Bin Wang & Le Yu, 2022. "Contrasting influences of biogeophysical and biogeochemical impacts of historical land use on global economic inequality," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Raphael Portmann & Urs Beyerle & Edouard Davin & Erich M. Fischer & Steven Hertog & Sebastian Schemm, 2022. "Global forestation and deforestation affect remote climate via adjusted atmosphere and ocean circulation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Temesgen Alemayehu Abera & Janne Heiskanen & Eduardo Eiji Maeda & Mohammed Ahmed Muhammed & Netra Bhandari & Ville Vakkari & Binyam Tesfaw Hailu & Petri K. E. Pellikka & Andreas Hemp & Pieter G. Zyl &, 2024. "Deforestation amplifies climate change effects on warming and cloud level rise in African montane forests," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Hao Luo & Johannes Quaas & Yong Han, 2024. "Decreased cloud cover partially offsets the cooling effects of surface albedo change due to deforestation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:11:y:2021:i:10:d:10.1038_s41558-021-01161-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.