IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v10y2020i4d10.1038_s41558-020-0713-4.html
   My bibliography  Save this article

Earlier leaf-out warms air in the north

Author

Listed:
  • Xiyan Xu

    (Institute of Atmospheric Physics, Chinese Academy of Sciences)

  • William J. Riley

    (Lawrence Berkeley National Laboratory)

  • Charles D. Koven

    (Lawrence Berkeley National Laboratory)

  • Gensuo Jia

    (Institute of Atmospheric Physics, Chinese Academy of Sciences)

  • Xiaoyan Zhang

    (Nanjing University of Information Science and Technology)

Abstract

Earlier leaf-out in response to climate warming has been recorded in northern temperate and boreal regions. In turn, this shift modifies climate by altering seasonal cycles of surface energy, water and carbon budgets. Here, we use the Community Earth System Model 1.2 to investigate climate feedbacks from advanced leaf-out in northern temperate and boreal vegetation. An imposed 12-day earlier leaf-out in this region, consistent with recent observations, enhances annual surface warming in the Northern Hemisphere. We identify warming hotspots in the Canadian Arctic Archipelago (~0.7 °C), east and west edges of Siberia (~0.4 °C) and southeastern Tibetan Plateau (~0.3 °C). We attribute this enhanced warming to combined effects of indirect water vapour, cloud and snow-albedo radiative feedbacks through intensified poleward water vapour transport rather than direct vegetation albedo and latent heat biophysical feedbacks. With continued warming, positive feedbacks between climate and leaf phenology are likely to amplify warming in the northern high latitudes.

Suggested Citation

  • Xiyan Xu & William J. Riley & Charles D. Koven & Gensuo Jia & Xiaoyan Zhang, 2020. "Earlier leaf-out warms air in the north," Nature Climate Change, Nature, vol. 10(4), pages 370-375, April.
  • Handle: RePEc:nat:natcli:v:10:y:2020:i:4:d:10.1038_s41558-020-0713-4
    DOI: 10.1038/s41558-020-0713-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-020-0713-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-020-0713-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu Lian & Sujong Jeong & Chang-Eui Park & Hao Xu & Laurent Z. X. Li & Tao Wang & Pierre Gentine & Josep Peñuelas & Shilong Piao, 2022. "Biophysical impacts of northern vegetation changes on seasonal warming patterns," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Georgeta Bandoc & Adrian Piticar & Cristian Patriche & Bogdan Roșca & Elena Dragomir, 2022. "Climate Warming-Induced Changes in Plant Phenology in the Most Important Agricultural Region of Romania," Sustainability, MDPI, vol. 14(5), pages 1-23, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:10:y:2020:i:4:d:10.1038_s41558-020-0713-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.