Author
Listed:
- Ember (Yiwei) Lu
(Division of Practice Advancement and Clinical Education, University of North Carolina Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599)
- Hui-Han Chen
(Division of Practice Advancement and Clinical Education, University of North Carolina Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599)
- Hongqing Zhao
(State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China)
- Sachiko Ozawa
(Division of Practice Advancement and Clinical Education, University of North Carolina Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; Department of Maternal and Child Health, University of North Carolina Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599)
Abstract
Antimicrobial resistance (AMR) poses a serious threat to global public health. However, vaccinations have been largely undervalued as a method to hinder AMR progression. This study examined the AMR impact of increasing pneumococcal conjugate vaccine (PCV) coverage in China. China has one of the world’s highest rates of antibiotic use and low PCV coverage. We developed an agent-based DREAMR (Dynamic Representation of the Economics of AMR) model to examine the health and economic benefits of slowing AMR against commonly used antibiotics. We simulated PCV coverage, pneumococcal infections, antibiotic use, and AMR accumulation. Four antibiotics to treat pneumococcal diseases (penicillin, amoxicillin, third-generation cephalosporins, and meropenem) were modeled with antibiotic utilization, pharmacokinetics, and pharmacodynamics factored into predicting AMR accumulation. Three PCV coverage scenarios were simulated over 5 y: 1) status quo with no change in coverage, 2) scaled coverage increase to 99% in 5 y, and 3) accelerated coverage increase to 85% over 2 y followed by 3 y to reach 99% coverage. Compared to the status quo, we found that AMR against penicillin, amoxicillin, and third-generation cephalosporins was significantly reduced by 6.6%, 10.9%, and 9.8% in the scaled scenario and by 10.5%, 17.0%, and 15.4% in the accelerated scenario. Cumulative costs due to AMR, including direct and indirect costs to patients and caretakers, were reduced by $371 million in the scaled and $586 million in the accelerated scenarios compared to the status quo. AMR-reducing benefits of vaccines are essential to quantify in order to drive appropriate investment.
Suggested Citation
Ember (Yiwei) Lu & Hui-Han Chen & Hongqing Zhao & Sachiko Ozawa, 2021.
"Health and economic impact of the pneumococcal conjugate vaccine in hindering antimicrobial resistance in China,"
Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(13), pages 2004933118-, March.
Handle:
RePEc:nas:journl:v:118:y:2021:p:e2004933118
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nas:journl:v:118:y:2021:p:e2004933118. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Eric Cain (email available below). General contact details of provider: http://www.pnas.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.