IDEAS home Printed from https://ideas.repec.org/a/nas/journl/v117y2020p21985-21993.html
   My bibliography  Save this article

The global value of water in agriculture

Author

Listed:
  • Paolo D’Odorico

    (Department of Environmental Sciences Policy and Management, University of California, Berkeley, CA 94720)

  • Davide Danilo Chiarelli

    (Department of Civil and Environmental Engineering, Politecnico di Milano, 20131 Milano, Italy)

  • Lorenzo Rosa

    (Department of Environmental Sciences Policy and Management, University of California, Berkeley, CA 94720)

  • Alfredo Bini

    (Department of Environmental Sciences Policy and Management, University of California, Berkeley, CA 94720)

  • David Zilberman

    (Department of Agricultural and Resource Economics,University of California, Berkeley, CA 94720)

  • Maria Cristina Rulli

    (Department of Civil and Environmental Engineering, Politecnico di Milano, 20131 Milano, Italy)

Abstract

Major environmental functions and human needs critically depend on water. In regions of the world affected by water scarcity economic activities can be constrained by water availability, leading to competition both among sectors and between human uses and environmental needs. While the commodification of water remains a contentious political issue, the valuation of this natural resource is sometime viewed as a strategy to avoid water waste. Likewise, water markets have been invoked as a mechanism to allocate water to economically most efficient uses. The value of water, however, remains difficult to estimate because water markets and market prices exist only in few regions of the world. Despite numerous attempts at estimating the value of water in the absence of markets (i.e., the “shadow price”), a global spatially explicit assessment of the value of water in agriculture is still missing. Here we propose a data-parsimonious biophysical framework to determine the value generated by water in irrigated agriculture and highlight its global spatiotemporal patterns. We find that in much of the world the actual crop distribution does not maximize agricultural water value.

Suggested Citation

  • Paolo D’Odorico & Davide Danilo Chiarelli & Lorenzo Rosa & Alfredo Bini & David Zilberman & Maria Cristina Rulli, 2020. "The global value of water in agriculture," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(36), pages 21985-21993, September.
  • Handle: RePEc:nas:journl:v:117:y:2020:p:21985-21993
    as

    Download full text from publisher

    File URL: http://www.pnas.org/content/117/36/21985.full
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Buttinelli, Rebecca & Cortignani, Raffaele & Caracciolo, Francesco, 2024. "Irrigation water economic value and productivity: An econometric estimation for maize grain production in Italy," Agricultural Water Management, Elsevier, vol. 295(C).
    2. Guangming Yang & Guofang Gong & Qingqing Gui, 2022. "Exploring the Spatial Network Structure of Agricultural Water Use Efficiency in China: A Social Network Perspective," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    3. Zihan Guo & Ni Wang & Xiaolian Mao & Xinyue Ke & Shaojiang Luo & Long Yu, 2022. "Benefit Analysis of Economic and Social Water Supply in Xi’an Based on the Emergy Method," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    4. Chenjun Zheng & Otto Spijkers, 2021. "Priority of Uses in International Water Law," Sustainability, MDPI, vol. 13(3), pages 1-15, February.
    5. Alcon, Francisco & Zabala, José A. & Martínez-García, Victor & Albaladejo, José A. & López-Becerra, Erasmo I. & de-Miguel, María D. & Martínez-Paz, José M., 2022. "The social wellbeing of irrigation water. A demand-side integrated valuation in a Mediterranean agroecosystem," Agricultural Water Management, Elsevier, vol. 262(C).
    6. Tatlhego, Mokganedi & Chiarelli, Davide Danilo & Rulli, Maria Cristina & D’Odorico, Paolo, 2022. "The value generated by irrigation in the command areas of new agricultural dams in Africa," Agricultural Water Management, Elsevier, vol. 264(C).
    7. Ghosh, Bikramaditya & Gubareva, Mariya & Ghosh, Anandita & Paparas, Dimitrios & Vo, Xuan Vinh, 2024. "Food, energy, and water nexus: A study on interconnectedness and trade-offs," Energy Economics, Elsevier, vol. 133(C).
    8. Jiaxing Pang & Xue Li & Xiang Li & Ting Yang & Ya Li & Xingpeng Chen, 2022. "Analysis of Regional Differences and Factors Influencing the Intensity of Agricultural Water in China," Agriculture, MDPI, vol. 12(4), pages 1-20, April.
    9. Fanzo, Jessica & Haddad, Lawrence & Schneider, Kate R. & Béné, Christophe & Covic, Namukolo M. & Guarin, Alejandro & Herforth, Anna W. & Herrero, Mario & Sumaila, U. Rashid & Aburto, Nancy J. & Amuyun, 2021. "Viewpoint: Rigorous monitoring is necessary to guide food system transformation in the countdown to the 2030 global goals," Food Policy, Elsevier, vol. 104(C).
    10. Schmitt, Rafael Jan Pablo & Rosa, Lorenzo, 2024. "Dams for hydropower and irrigation: Trends, challenges, and alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. repec:zib:zbesmy:v:3:y:2022:i:2:p:95-103 is not listed on IDEAS
    12. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).
    13. Wei, Jun & Cui, Yuanlai & Luo, Yufeng, 2023. "Rice growth period detection and paddy field evapotranspiration estimation based on an improved SEBAL model: Considering the applicable conditions of the advection equation," Agricultural Water Management, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nas:journl:v:117:y:2020:p:21985-21993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Eric Cain (email available below). General contact details of provider: http://www.pnas.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.