The application of ensemble methods in forecasting bankruptcy
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- du Jardin, Philippe, 2010. "Predicting bankruptcy using neural networks and other classification methods: the influence of variable selection techniques on model accuracy," MPRA Paper 44375, University Library of Munich, Germany.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mohammad Shamsu Uddin & Guotai Chi & Mazin A. M. Al Janabi & Tabassum Habib & Kunpeng Yuan, 2022. "Modeling credit risk with a multi‐stage hybrid model: An alternative statistical approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1386-1415, November.
- Stewart Jones, 2017. "Corporate bankruptcy prediction: a high dimensional analysis," Review of Accounting Studies, Springer, vol. 22(3), pages 1366-1422, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- du Jardin, Philippe & Séverin, Eric, 2011.
"Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model,"
MPRA Paper
44262, University Library of Munich, Germany.
- P. Du Jardin & E. Séverin, 2011. "Predicting Corporate Bankruptcy Using Self-Organising map: An empirical study to Improve the Forecasting horizon of financial failure model," Post-Print hal-00801878, HAL.
- Noora Alzayed & Rasol Eskandari & Hassan Yazdifar, 2023. "Bank failure prediction: corporate governance and financial indicators," Review of Quantitative Finance and Accounting, Springer, vol. 61(2), pages 601-631, August.
- Fatima Zahra Azayite & Said Achchab, 2019. "A hybrid neural network model based on improved PSO and SA for bankruptcy prediction," Papers 1907.12179, arXiv.org.
- Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Post-Print halshs-01281948, HAL.
- Seyma Caliskan Cavdar & Alev Dilek Aydin, 2015. "An Empirical Analysis for the Prediction of a Financial Crisis in Turkey through the Use of Forecast Error Measures," JRFM, MDPI, vol. 8(3), pages 1-18, August.
- Piasecki Krzysztof & Wójcicka-Wójtowicz Aleksandra, 2017. "Capacity of Neural Networks and Discriminant Analysis in Classifying Potential Debtors," Folia Oeconomica Stetinensia, Sciendo, vol. 17(2), pages 129-143, December.
- James W. Kolari & Ivan Pastor Sanz, 2017. "Systemic risk measurement in banking using self-organizing maps," Journal of Banking Regulation, Palgrave Macmillan, vol. 18(4), pages 338-358, November.
- Mogilat , Anastasia & Ipatova, Irina, 2016. "Technical efficiency as a factor of Russian industrial companies’ risks of financial distress," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 42, pages 05-29.
- Ali Asgary & Ali Sadeghi Naini, 2011. "Modelling The Adaptation Of Business Continuity Planning By Businesses Using Neural Networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 89-104, April.
- Angeliki Papana & Anastasia Spyridou, 2020. "Bankruptcy Prediction: The Case of the Greek Market," Forecasting, MDPI, vol. 2(4), pages 1-21, December.
- Zeineb Affes & Rania Hentati-Kaffel, 2016.
"Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis,"
Documents de travail du Centre d'Economie de la Sorbonne
16016, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01281948, HAL.
- Apostolos G. Christopoulos & Ioannis G. Dokas & Iraklis Kollias & John Leventides, 2019. "An implementation of Soft Set Theory in the Variables Selection Process for Corporate Failure Prediction Models. Evidence from NASDAQ Listed Firms," Bulletin of Applied Economics, Risk Market Journals, vol. 6(1), pages 1-20.
- Ilyes Abid & Rim Ayadi & Khaled Guesmi & Farid Mkaouar, 2022. "A new approach to deal with variable selection in neural networks: an application to bankruptcy prediction," Annals of Operations Research, Springer, vol. 313(2), pages 605-623, June.
- Ching-Hsue Cheng & Ssu-Hsiang Wang, 2015. "A quarterly time-series classifier based on a reduced-dimension generated rules method for identifying financial distress," Quantitative Finance, Taylor & Francis Journals, vol. 15(12), pages 1979-1994, December.
- Amani, Farzaneh A. & Fadlalla, Adam M., 2017. "Data mining applications in accounting: A review of the literature and organizing framework," International Journal of Accounting Information Systems, Elsevier, vol. 24(C), pages 32-58.
- Luca Sensini, 2016. "An Empirical Analysis of Financially Distressed Italian Companies," International Business Research, Canadian Center of Science and Education, vol. 9(10), pages 75-85, October.
- Tamás Kristóf & Miklós Virág, 2020. "A Comprehensive Review of Corporate Bankruptcy Prediction in Hungary," JRFM, MDPI, vol. 13(2), pages 1-20, February.
- Sami Ben Jabeur & Nicolae Stef & Pedro Carmona, 2023. "Bankruptcy Prediction using the XGBoost Algorithm and Variable Importance Feature Engineering," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 715-741, February.
- Santosh Kumar Shrivastav & P. Janaki Ramudu, 2020. "Bankruptcy Prediction and Stress Quantification Using Support Vector Machine: Evidence from Indian Banks," Risks, MDPI, vol. 8(2), pages 1-22, May.
- Alessandra Amendola & Francesco Giordano & Maria Lucia Parrella & Marialuisa Restaino, 2017. "Variable selection in high‐dimensional regression: a nonparametric procedure for business failure prediction," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(4), pages 355-368, August.
More about this item
Keywords
bankruptcy prediction; ensemble methods; industry average; decision trees;All these keywords.
JEL classification:
- C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
- C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
- G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mnb:finrev:v:13:y:2014:i:4:p:180-195. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Morvay Endre (email available below). General contact details of provider: https://edirc.repec.org/data/mnbgvhu.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.