IDEAS home Printed from https://ideas.repec.org/a/mes/emfitr/v56y2020i3p673-692.html
   My bibliography  Save this article

Financial versus Non-Financial Information for Default Prediction: Evidence from Sri Lanka and the USA

Author

Listed:
  • Jayasuriya Mahapatabendige Ruwani Fernando
  • Leon Li
  • Greg Hou

Abstract

We report the effectiveness of corporate governance variables (GOVs) in default prediction, in a comparative study between Sri Lanka and the USA. Twelve GOVs are tested in addition to the standard financial data. A panel logit model framework is employed to conduct empirical tests on 730 Sri Lankan and 3280 USA observations from 2000 to 2015. Whilst an integrated model provides overall stronger predictive value; financial information is more relevant for USA firms. GOVs appear more relevant in emerging markets than in mature markets, but the effectiveness of the individual GOVs differs between countries.

Suggested Citation

  • Jayasuriya Mahapatabendige Ruwani Fernando & Leon Li & Greg Hou, 2020. "Financial versus Non-Financial Information for Default Prediction: Evidence from Sri Lanka and the USA," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 56(3), pages 673-692, February.
  • Handle: RePEc:mes:emfitr:v:56:y:2020:i:3:p:673-692
    DOI: 10.1080/1540496X.2018.1545644
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1540496X.2018.1545644
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1540496X.2018.1545644?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Egor O. Bukharin & Sofia I. Mangileva & Vladislav V. Afanasev, 2024. "Default Prediction for Russian Food Service Firms: Contribution of Non-Financial Factors and Machine Learning," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 23(1), pages 206-226.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mes:emfitr:v:56:y:2020:i:3:p:673-692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/MREE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.