IDEAS home Printed from https://ideas.repec.org/a/ksa/szemle/547.html
   My bibliography  Save this article

A pénzügyi eszközök árazásának alaptétele diszkrét idejű modellekben
[The fundamental proposition of financial-resource pricing in discrete-time models]

Author

Listed:
  • Medvegyev, Péter

Abstract

A szerző a pénzügyi matematika pénzügyi módszerekkel csökkenthető kockázatainak nagyságát próbálja matematikai megfontolásokkal meghatározni. A matematikai pénzügyek legegyszerűbb állításait ismerteti, diszkrét, véges időhorizont esetén be látja az eszközárazás első és második alaptételét.* Journal of Economic Literature (JEL) kód: G12, G13.

Suggested Citation

  • Medvegyev, Péter, 2002. "A pénzügyi eszközök árazásának alaptétele diszkrét idejű modellekben [The fundamental proposition of financial-resource pricing in discrete-time models]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 597-620.
  • Handle: RePEc:ksa:szemle:547
    as

    Download full text from publisher

    File URL: http://www.kszemle.hu/tartalom/letoltes.php?id=547
    Download Restriction: Registration and subscription. 3-month embargo period to non-subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schachermayer, W., 1992. "A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time," Insurance: Mathematics and Economics, Elsevier, vol. 11(4), pages 249-257, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Badics, Tamás, 2011. "Az arbitrázs preferenciákkal történő karakterizációjáról [On the characterization of arbitrage in terms of preferences]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(9), pages 727-742.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesca Biagini & Alessandro Doldi & Jean-Pierre Fouque & Marco Frittelli & Thilo Meyer-Brandis, 2023. "Collective Arbitrage and the Value of Cooperation," Papers 2306.11599, arXiv.org, revised May 2024.
    2. Tomasz R. Bielecki & Igor Cialenco & Ismail Iyigunler & Rodrigo Rodriguez, 2012. "Dynamic Conic Finance: Pricing and Hedging in Market Models with Transaction Costs via Dynamic Coherent Acceptability Indices," Papers 1205.4790, arXiv.org, revised Jun 2013.
    3. Tak Siu & John Lau & Hailiang Yang, 2007. "On Valuing Participating Life Insurance Contracts with Conditional Heteroscedasticity," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(3), pages 255-275, September.
    4. Siu, Tak Kuen & Yang, Hailiang & Lau, John W., 2008. "Pricing currency options under two-factor Markov-modulated stochastic volatility models," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 295-302, December.
    5. A. Fiori Maccioni, 2011. "The risk neutral valuation paradox," Working Paper CRENoS 201112, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    6. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    7. W. Schachermayer, 1994. "Martingale Measures For Discrete‐Time Processes With Infinite Horizon," Mathematical Finance, Wiley Blackwell, vol. 4(1), pages 25-55, January.
    8. Tak Siu, 2006. "Option Pricing Under Autoregressive Random Variance Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 62-75.
    9. Eckhard Platen & Stefan Tappe, 2020. "The Fundamental Theorem of Asset Pricing for Self-Financing Portfolios," Research Paper Series 411, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. Jos'e Manuel Corcuera, 2021. "The Golden Age of the Mathematical Finance," Papers 2102.06693, arXiv.org, revised Mar 2021.
    11. Mirás, Miguel Ángel & Muñoz-Bouzo, María José, 2001. "Projective system approach to the martingale characterization of the absence of arbitrage," DEE - Working Papers. Business Economics. WB wb011505, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    12. Pansera, Jérôme, 2012. "Discrete-time local risk minimization of payment processes and applications to equity-linked life-insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 1-11.
    13. repec:cte:idrepe:22932 is not listed on IDEAS
    14. Alessandro Fiori Maccioni, 2011. "Endogenous Bubbles in Derivatives Markets: The Risk Neutral Valuation Paradox," Papers 1106.5274, arXiv.org, revised Sep 2011.
    15. Adrien Nguyen Huu, 2011. "A note on super-hedging for investor-producers," Papers 1112.4740, arXiv.org, revised Mar 2012.
    16. repec:dau:papers:123456789/5374 is not listed on IDEAS
    17. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    18. Tomasz R. Bielecki & Igor Cialenco & Rodrigo Rodriguez, 2012. "No-Arbitrage Pricing for Dividend-Paying Securities in Discrete-Time Markets with Transaction Costs," Papers 1205.6254, arXiv.org, revised Jun 2013.
    19. Lau, John W. & Siu, Tak Kuen, 2008. "On option pricing under a completely random measure via a generalized Esscher transform," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 99-107, August.
    20. Eckhard Platen & Stefan Tappe, 2020. "No arbitrage and multiplicative special semimartingales," Papers 2005.05575, arXiv.org, revised Sep 2022.
    21. Matteo Burzoni & Mario Sikic, 2018. "Robust martingale selection problem and its connections to the no-arbitrage theory," Papers 1801.03574, arXiv.org, revised Nov 2018.
    22. Tahir Choulli & Jun Deng, 2014. "Non-arbitrage for Informational Discrete Time Market Models," Papers 1407.1453, arXiv.org.

    More about this item

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ksa:szemle:547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Odon Sok (email available below). General contact details of provider: http://www.kszemle.hu .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.