Author
Listed:
- Leizhen Wang
(Monash University)
- Xin Chen
(The University of Queensland)
- Zhenliang Ma
(KTH Royal Institute of Technology)
- Pengfei Zhang
(Henan Academy of Sciences)
- Baichuan Mo
(MIT)
- Peibo Duan
(Monash University)
Abstract
Incentive-based public transport demand management (PTDM) can effectively mitigate overcrowding issues in crowded urban rail systems. Analyzing passengers’ behavioral responses to the incentive can guide the design, implementation, and update of PTDM strategies. Though several studies reported passengers’ responses to fare incentives, they focused on passengers’ short-term behavioral responses. Limited studies explore passengers’ longitudinal behavioral responses for different types of adopters, which is important for policy assessment and adjustment. This paper explores and models passengers’ longitudinal behavior response to a pre-peak fare discount incentive using 18 months of smartcard data in public transport in Hong Kong. We classified adopters into six types based on their temporal travel pattern changes before and after the promotion. The longitudinal analysis reveals that among all adopters, 19% of users change their departure times to take advantage of fare discounts but do not contribute to the goal of reducing peak-hour travel. However, these adopters are more likely to sustain their changed behavior in a long term which is not desired by the incentive program. The spatial analysis shows that the origin station distribution of late adopters is relatively more diverse than the early adopters with more trips starting from distant areas. The diffusion modeling shows that the majority adopters are innovators and the word-of-mouth diffusion effect (imitators) is marginal. The discrete choice model results highlight the heterogeneous impact of factors on different types of adopters and their values of time changes. The significant factors common to adopters are: departure time flexibility, the expected money savings, the required departure time changes, and work locations. The findings are useful for public transport planners and policymakers for informed incentive design and management.
Suggested Citation
Leizhen Wang & Xin Chen & Zhenliang Ma & Pengfei Zhang & Baichuan Mo & Peibo Duan, 2025.
"Data-driven analysis and modeling of individual longitudinal behavior response to fare incentives in public transport,"
Transportation, Springer, vol. 52(1), pages 263-286, February.
Handle:
RePEc:kap:transp:v:52:y:2025:i:1:d:10.1007_s11116-023-10419-8
DOI: 10.1007/s11116-023-10419-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:52:y:2025:i:1:d:10.1007_s11116-023-10419-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.