IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v45y2018i1d10.1007_s11116-016-9722-6.html
   My bibliography  Save this article

A statistical analysis of the dynamics of household hurricane-evacuation decisions

Author

Listed:
  • Md Tawfiq Sarwar

    (University at Buffalo, The State University of New York)

  • Panagiotis Ch. Anastasopoulos

    (University at Buffalo, The State University of New York)

  • Satish V. Ukkusuri

    (Purdue University)

  • Pamela Murray-Tuite

    (Virginia Tech)

  • Fred L. Mannering

    (University of South Florida)

Abstract

With the increasing number of hurricanes in the last decade, efficient and timely evacuation remains a significant concern. Households’ decisions to evacuate/stay and selection of departure time are complex phenomena. This study identifies the different factors that influence the decision making process, and if a household decides to evacuate, what affects the timing of the execution of that decision. While developing a random parameters binary logit model of the evacuate/stay decision, several factors, such as, socio-economic characteristics, actions by authority, and geographic location, have been considered along with the dynamic nature of the hurricane itself. In addition, taking the landfall as a base, how the evacuation timing varies, considering both the time-of-day and hours before landfall, has been analyzed rigorously. Influential factors in the joint model include the relative time until the hurricane’s landfall, height of the coastal flooding, and approaching speed of the hurricane; household’s geographic location (state); having more than one child in the household, vehicle ownership, and level of education; and type of evacuation notice received (voluntary or mandatory). Two time intervals from 30 to 42 h and 42 to 66 h before landfall resulted in random parameters, reflecting mixed effects on the likelihood to evacuate/stay. Possible sources of the unobserved heterogeneity captured by the random parameters include the respondents’ risk perception or other unobserved physiological and psychological factors associated with how respondents comprehend a hurricane threat. Thus, the model serves the purpose of estimating evacuation decision and timing simultaneously using the data of Hurricane Ivan.

Suggested Citation

  • Md Tawfiq Sarwar & Panagiotis Ch. Anastasopoulos & Satish V. Ukkusuri & Pamela Murray-Tuite & Fred L. Mannering, 2018. "A statistical analysis of the dynamics of household hurricane-evacuation decisions," Transportation, Springer, vol. 45(1), pages 51-70, January.
  • Handle: RePEc:kap:transp:v:45:y:2018:i:1:d:10.1007_s11116-016-9722-6
    DOI: 10.1007/s11116-016-9722-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-016-9722-6
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-016-9722-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Widener & Mark Horner & Sara Metcalf, 2013. "Simulating the effects of social networks on a population’s hurricane evacuation participation," Journal of Geographical Systems, Springer, vol. 15(2), pages 193-209, April.
    2. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, September.
    3. John C. Whitehead & Bob Edwards & Marieke Van Willigen & John R. Maiolo & Kenneth Wilson & Kevin T. Smith, 2000. "“Heading for Higher Ground: Factors Affecting Real and Hypothetical Hurricane Evacuation Behavior,”," Working Papers 0006, East Carolina University, Department of Economics.
    4. Bhat, Chandra R., 2003. "Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 837-855, November.
    5. Michael Lindell & Jung Kang & Carla Prater, 2011. "The logistics of household hurricane evacuation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1093-1109, September.
    6. Adam Pel & Michiel Bliemer & Serge Hoogendoorn, 2012. "A review on travel behaviour modelling in dynamic traffic simulation models for evacuations," Transportation, Springer, vol. 39(1), pages 97-123, January.
    7. Solis, Daniel & Thomas, Michael H. & Letson, David, 2009. "Determinants Of Household Hurricane Evacuation Choice In Flordia," 2009 Annual Meeting, January 31-February 3, 2009, Atlanta, Georgia 45338, Southern Agricultural Economics Association.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wong, Stephen D & Chorus, Caspar G & Shaheen, Susan A & Walker, Joan L, 2020. "A Revealed Preference Methodology to Evaluate Regret Minimization with Challenging Choice Sets: A Wildfire Evacuation Case Study," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2k12q9ph, Institute of Transportation Studies, UC Berkeley.
    2. Ding Wang & Kaan Ozbay & Zilin Bian, 2021. "Modeling and Analysis of Optimal Strategies for Leveraging Ride-Sourcing Services in Hurricane Evacuation," Sustainability, MDPI, vol. 13(8), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rambha, Tarun & Nozick, Linda K. & Davidson, Rachel, 2021. "Modeling hurricane evacuation behavior using a dynamic discrete choice framework," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 75-100.
    2. Ma. Bernadeth B. Lim & Hector R. Lim & Mongkut Piantanakulchai & Francis Aldrine Uy, 2016. "A household-level flood evacuation decision model in Quezon City, Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1539-1561, February.
    3. Shi An & Ze Wang & Jianxun Cui, 2015. "Integrating Regret Psychology to Travel Mode Choice for a Transit-Oriented Evacuation Strategy," Sustainability, MDPI, vol. 7(7), pages 1-16, June.
    4. Ma. Lim & Hector Lim & Mongkut Piantanakulchai & Francis Uy, 2016. "A household-level flood evacuation decision model in Quezon City, Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1539-1561, February.
    5. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    6. Weiss, Adam & Habib, Khandker Nurul, 2017. "Examining the difference between park and ride and kiss and ride station choices using a spatially weighted error correlation (SWEC) discrete choice model," Journal of Transport Geography, Elsevier, vol. 59(C), pages 111-119.
    7. Hemant Gehlot & Arif M. Sadri & Satish V. Ukkusuri, 2019. "Joint modeling of evacuation departure and travel times in hurricanes," Transportation, Springer, vol. 46(6), pages 2419-2440, December.
    8. Richards, Timothy J. & Hamilton, Stephen F. & Yonezawa, Koichi, 2018. "Retail Market Power in a Shopping Basket Model of Supermarket Competition," Journal of Retailing, Elsevier, vol. 94(3), pages 328-342.
    9. Stefan Hochguertel & Henry Ohlsson, 2009. "Compensatory inter vivos gifts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(6), pages 993-1023.
    10. Staus, Alexander, 2008. "Standard and Shuffled Halton Sequences in a Mixed Logit Model," Working Papers 93856, Universitaet Hohenheim, Institute of Agricultural Policy and Agricultural Markets.
    11. Hensher, David A., 2008. "Empirical approaches to combining revealed and stated preference data: Some recent developments with reference to urban mode choice," Research in Transportation Economics, Elsevier, vol. 23(1), pages 23-29, January.
    12. Xiaomei Lin & Yusak O. Susilo & Chunfu Shao & Chengxi Liu, 2018. "The Implication of Road Toll Discount for Mode Choice: Intercity Travel during the Chinese Spring Festival Holiday," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    13. Campbell, Danny & Hutchinson, W. George & Scarpa, Riccardo, 2006. "Lexicographic Preferences in Discrete Choice Experiments: Consequences on Individual-Specific Willingness to Pay Estimates," Sustainability Indicators and Environmental Valuation Working Papers 12224, Fondazione Eni Enrico Mattei (FEEM).
    14. Eduardo Fé & Richard Hofler, 2013. "Count data stochastic frontier models, with an application to the patents–R&D relationship," Journal of Productivity Analysis, Springer, vol. 39(3), pages 271-284, June.
    15. Rebecca R. Thompson & Dana Rose Garfin & Roxane Cohen Silver, 2017. "Evacuation from Natural Disasters: A Systematic Review of the Literature," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 812-839, April.
    16. Eran Ben-Elia & Robert Ishaq & Yoram Shiftan, 2013. "“If only I had taken the other road...”: Regret, risk and reinforced learning in informed route-choice," Transportation, Springer, vol. 40(2), pages 269-293, February.
    17. Caliendo, Marco & Cobb-Clark, Deborah A. & Pfeifer, Harald & Uhlendorff, Arne & Wehner, Caroline, 2024. "Managers’ risk preferences and firm training investments," European Economic Review, Elsevier, vol. 161(C).
    18. Yonezawa, Koichi & Richards, Timothy J., 2016. "Competitive Package Size Decisions," Journal of Retailing, Elsevier, vol. 92(4), pages 445-469.
    19. Mesa-Arango, Rodrigo & Ukkusuri, Satish V., 2014. "Attributes driving the selection of trucking services and the quantification of the shipper’s willingness to pay," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 142-158.
    20. Marco A. Palma & Dmitry V. Vedenov & David Bessler, 2020. "The order of variables, simulation noise, and accuracy of mixed logit estimates," Empirical Economics, Springer, vol. 58(5), pages 2049-2083, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:45:y:2018:i:1:d:10.1007_s11116-016-9722-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.