IDEAS home Printed from https://ideas.repec.org/a/kap/theord/v55y2003i4p359-389.html
   My bibliography  Save this article

Bargaining Solutions as Social Compromises

Author

Listed:
  • Andreas Pfingsten
  • Andreas Wagener

Abstract

A bargaining solution is a social compromise if it is metrically rationalizable, i.e., if it has an optimum (depending on the situation, smallest or largest) distance from some reference point. We explore the workability and the limits of metric rationalization in bargaining theory where compromising is a core issue. We demonstrate that many well-known bargaining solutions are social compromises with respect to reasonable metrics. In the metric approach, bargaining solutions can be grounded in axioms on how society measures differences between utility allocations. Using this approach, we provide an axiomatic characterization for the class of social compromises that are based on p-norms and for the attending bargaining solutions. We further show that bargaining solutions which satisfy Pareto Optimality and Individual Rationality can always be metrically rationalized.

Suggested Citation

  • Andreas Pfingsten & Andreas Wagener, 2003. "Bargaining Solutions as Social Compromises," Theory and Decision, Springer, vol. 55(4), pages 359-389, December.
  • Handle: RePEc:kap:theord:v:55:y:2003:i:4:p:359-389
    as

    Download full text from publisher

    File URL: http://journals.kluweronline.com/issn/0040-5833/contents
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edith Elkind & Piotr Faliszewski & Arkadii Slinko, 2015. "Distance rationalization of voting rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(2), pages 345-377, September.
    2. M. Voorneveld & A. Nouweland & R. McLean, 2011. "Axiomatizations of the Euclidean compromise solution," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(3), pages 427-448, August.
    3. Christian Roessler, 2006. "Public Good Menus and Feature Complementarity," Department of Economics - Working Papers Series 962, The University of Melbourne.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:theord:v:55:y:2003:i:4:p:359-389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.