IDEAS home Printed from https://ideas.repec.org/a/kap/rqfnac/v22y2004i1p39-51.html
   My bibliography  Save this article

Is the ‘Perfect’ Timing Strategy Truly Perfect?

Author

Listed:
  • K. Lam
  • Wei Li

Abstract

In the presence of transaction cost, the ‘perfect’ timing strategy which holds stocks in a period with positive excess return and holds cash in a period with negative excess return is not necessarily perfect. Using the optimal growth criterion, this paper derives the truly perfect timing strategy which can achieve the maximum long term growth. It is found that such a perfect timing strategy can achieve a much higher annual return than the ‘perfect’ timing strategy under reasonable transaction cost. Also, it can achieve a return of over 80% when a review period is as short as a day and when transaction cost is low. Using the truly perfect timing strategy as a benchmark, the likely gains from imperfect timing can be more accurately assessed. For a less frequent review schedule, a market timer needs a very high correct prediction probability in order to be at par with the buy-and-hold strategy. However, the needed correct prediction probability is much less when the review schedule is more frequent. Also, the correct prediction probability needed to be at par with the buy-and-hold strategy increases with the transaction cost. Copyright Kluwer Academic Publishers 2004

Suggested Citation

  • K. Lam & Wei Li, 2004. "Is the ‘Perfect’ Timing Strategy Truly Perfect?," Review of Quantitative Finance and Accounting, Springer, vol. 22(1), pages 39-51, January.
  • Handle: RePEc:kap:rqfnac:v:22:y:2004:i:1:p:39-51
    DOI: 10.1023/B:REQU.0000006186.76340.20
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/B:REQU.0000006186.76340.20
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/B:REQU.0000006186.76340.20?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark J Ready, 2002. "Profits from Technical Trading Rules," Financial Management, Financial Management Association, vol. 31(3), Fall.
    2. Li, Wei & Lam, Kin, 2002. "Optimal market timing strategies under transaction costs," Omega, Elsevier, vol. 30(2), pages 97-108, April.
    3. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    4. Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiotis Schizas & Dimitrios D. Thomakos, 2015. "Market timing and trading strategies using asset rotation: non-neutral market positioning for exploiting arbitrage opportunities," Quantitative Finance, Taylor & Francis Journals, vol. 15(2), pages 285-298, February.
    2. Robert Goldberg, 2015. "A methodology for computing and comparing implied equity and corporate-debt Sharpe Ratios," Review of Quantitative Finance and Accounting, Springer, vol. 44(4), pages 733-754, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shynkevich, Andrei, 2013. "Time-series momentum as an intra- and inter-industry effect: Implications for market efficiency," Journal of Economics and Business, Elsevier, vol. 69(C), pages 64-85.
    2. Hsu, Po-Hsuan & Hsu, Yu-Chin & Kuan, Chung-Ming, 2010. "Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 471-484, June.
    3. Yochanan Shachmurove & Uri BenZion & Paul Klein & Joseph Yagil, 2001. "A Moving Average Comparison of the Tel-Aviv 25 and S&P 500 Stock Indices," Penn CARESS Working Papers 4731f3394c43bebf4d3191c81, Penn Economics Department.
    4. Neely, Christopher J., 2003. "Risk-adjusted, ex ante, optimal technical trading rules in equity markets," International Review of Economics & Finance, Elsevier, vol. 12(1), pages 69-87.
    5. Marshall, Ben R. & Cahan, Rochester H. & Cahan, Jared M., 2008. "Does intraday technical analysis in the U.S. equity market have value?," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 199-210, March.
    6. Paskalis Glabadanidis, 2015. "Market Timing With Moving Averages," International Review of Finance, International Review of Finance Ltd., vol. 15(3), pages 387-425, September.
    7. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    8. Kevin Rink, 2023. "The predictive ability of technical trading rules: an empirical analysis of developed and emerging equity markets," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(4), pages 403-456, December.
    9. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    10. Ioana-Andreea Boboc & Mihai-Cristian Dinică, 2013. "An Algorithm for Testing the Efficient Market Hypothesis," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-11, October.
    11. Marshall, Ben R. & Young, Martin R. & Rose, Lawrence C., 2006. "Candlestick technical trading strategies: Can they create value for investors?," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2303-2323, August.
    12. Paskalis Glabadanidis, 2014. "The Market Timing Power of Moving Averages: Evidence from US REITs and REIT Indexes," International Review of Finance, International Review of Finance Ltd., vol. 14(2), pages 161-202, June.
    13. Jenni L. Bettman & Stephen J. Sault & Emma L. Schultz, 2009. "Fundamental and technical analysis: substitutes or complements?," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 49(1), pages 21-36, March.
    14. Paskalis Glabadanidis, 2017. "Timing the Market with a Combination of Moving Averages," International Review of Finance, International Review of Finance Ltd., vol. 17(3), pages 353-394, September.
    15. Huang, Jing-Zhi & Huang, Zhijian (James), 2020. "Testing moving average trading strategies on ETFs," Journal of Empirical Finance, Elsevier, vol. 57(C), pages 16-32.
    16. Adrian Zoicas‐Ienciu, 2021. "Evaluating active investing with generic trading reactions," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1018-1036, January.
    17. Chen, Chien-Hua & Su, Xuan-Qi & Lin, Jun-Biao, 2016. "The role of information uncertainty in moving-average technical analysis: A study of individual stock-option issuance in Taiwan," Finance Research Letters, Elsevier, vol. 18(C), pages 263-272.
    18. Shynkevich, Andrei, 2012. "Performance of technical analysis in growth and small cap segments of the US equity market," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 193-208.
    19. Wang, Zi-Mei & Chiao, Chaoshin & Chang, Ya-Ting, 2012. "Technical analyses and order submission behaviors: Evidence from an emerging market," International Review of Economics & Finance, Elsevier, vol. 24(C), pages 109-128.
    20. Auffret, Philippe, 2001. "An alternative unifying measure of welfare gains from risk-sharing," Policy Research Working Paper Series 2676, The World Bank.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:rqfnac:v:22:y:2004:i:1:p:39-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.