IDEAS home Printed from https://ideas.repec.org/a/kap/rqfnac/v10y1998i1p21-37.html
   My bibliography  Save this article

On the Efficiency of Conditional Heteroskedasticity Models

Author

Listed:
  • Lee, T Y
  • Wirjanto, Tony S

Abstract

This paper discusses how conditional heteroskedasticity models can be estimated efficiently without imposing strong distributional assumptions such as normality. Using the generalized method of moments (GMM) principle, we show that for a class of models with a symmetric conditional distribution, the GMM estimates obtained from the joint estimating equations corresponding to the conditional mean and variance of the model are efficient when the instruments are chosen optimally. A simple ARCH(l) model is used to illustrate the feasibility of the proposed estimation procedure. Copyright 1998 by Kluwer Academic Publishers

Suggested Citation

  • Lee, T Y & Wirjanto, Tony S, 1998. "On the Efficiency of Conditional Heteroskedasticity Models," Review of Quantitative Finance and Accounting, Springer, vol. 10(1), pages 21-37, January.
  • Handle: RePEc:kap:rqfnac:v:10:y:1998:i:1:p:21-37
    as

    Download full text from publisher

    File URL: http://journals.kluweronline.com/issn/0924-865X/contents
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Curto & José Pinto & Ana Morais & Isabel Lourenço, 2011. "The heteroskedasticity-consistent covariance estimator in accounting," Review of Quantitative Finance and Accounting, Springer, vol. 37(4), pages 427-449, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:rqfnac:v:10:y:1998:i:1:p:21-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.