IDEAS home Printed from https://ideas.repec.org/a/kap/revdev/v3y2000i3p237-262.html
   My bibliography  Save this article

Interest rate option pricing with volatility humps

Author

Listed:
  • Peter Ritchken
  • Iyuan Chuang

Abstract

This paper develops a simple model for pricing interest rate options when the volatility structure of forward rates is humped. Analytical solutions are developed for European claims and efficient algorithms exist for pricing American options. The interest rate claims are priced in the Heath-Jarrow-Morton paradigm, and hence incorporate full information on the term structure. The structure of volatilities is captured without using time varying parameters. As a result, the volatility structure is stationary. It is not possible to have all the above properties hold in a Heath Jarrow Morton model with a single state variable. It is shown that the full dynamics of the term structure is captured by a three state Markovian system. Caplet data is used to establish that the volatility hump is an important feature to capture. Copyright Kluwer Academic Publishers 2000

Suggested Citation

  • Peter Ritchken & Iyuan Chuang, 2000. "Interest rate option pricing with volatility humps," Review of Derivatives Research, Springer, vol. 3(3), pages 237-262, October.
  • Handle: RePEc:kap:revdev:v:3:y:2000:i:3:p:237-262
    DOI: 10.1023/A:1009690621051
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1009690621051
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1009690621051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26, March.
    2. Moraleda, Juan M. & Vorst, Ton C. F., 1997. "Pricing American interest rate claims with humped volatility models," Journal of Banking & Finance, Elsevier, vol. 21(8), pages 1131-1157, August.
    3. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    4. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    5. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    6. Narasimhan Jegadeesh & George Pennacchi, 1996. "The behavior of interest rates implied by the term structure of Eurodollar future," Proceedings, Federal Reserve Bank of Cleveland, issue Aug, pages 426-451.
    7. Li, Anlong & Ritchken, Peter & Sankarasubramanian, L, 1995. "Lattice Models for Pricing American Interest Rate Claims," Journal of Finance, American Finance Association, vol. 50(2), pages 719-737, June.
    8. repec:bla:jfinan:v:44:y:1989:i:1:p:205-09 is not listed on IDEAS
    9. Robert R. Bliss & Peter Richken, 1996. "Empirical tests of two state-variable Heath-Jarrow models," Proceedings, Federal Reserve Bank of Cleveland, issue Aug, pages 452-481.
    10. Peter Ritchken & L. Sankarasubramanian, 1995. "Volatility Structures Of Forward Rates And The Dynamics Of The Term Structure1," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 55-72, January.
    11. Amin, Kaushik I. & Morton, Andrew J., 1994. "Implied volatility functions in arbitrage-free term structure models," Journal of Financial Economics, Elsevier, vol. 35(2), pages 141-180, April.
    12. Balduzzi, Pierluigi & Bertola, Giuseppe & Foresi, Silverio, 1997. "A model of target changes and the term structure of interest rates," Journal of Monetary Economics, Elsevier, vol. 39(2), pages 223-249, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haitao Li & Xiaoxia Ye, 2013. "A Type of HJM Based Affine Model: Theory and Empirical Evidence," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    2. Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 309-348, January.
    3. Massimo Costabile & Ivar Massabó & Emilio Russo, 2013. "A Path-Independent Humped Volatility Model for Option Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(3), pages 191-210, July.
    4. Marat Kramin & Saikat Nandi & Alexander Shulman, 2008. "A multi-factor Markovian HJM model for pricing American interest rate derivatives," Review of Quantitative Finance and Accounting, Springer, vol. 31(4), pages 359-378, November.
    5. Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Post-Print hal-02367200, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabio Mercurio & Juan Moraleda, 2001. "A family of humped volatility models," The European Journal of Finance, Taylor & Francis Journals, vol. 7(2), pages 93-116.
    2. Chiarella, Carl & Clewlow, Les & Musti, Silvana, 2005. "A volatility decomposition control variate technique for Monte Carlo simulations of Heath Jarrow Morton models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 325-336, March.
    3. Massimo Costabile & Ivar Massabó & Emilio Russo, 2013. "A Path-Independent Humped Volatility Model for Option Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(3), pages 191-210, July.
    4. Ram Bhar & Carl Chiarella & Thuy-Duong To, 2004. "Estimating the Volatility Structure of an Arbitrage-Free Interest Rate Model Via the Futures Markets," Finance 0409003, University Library of Munich, Germany.
    5. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    6. Carl Chiarella & Oh-Kang Kwon, 2001. "State Variables and the Affine Nature of Markovian HJM Term Structure Models," Research Paper Series 52, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. Anders B. Trolle & Eduardo S. Schwartz, 2009. "A General Stochastic Volatility Model for the Pricing of Interest Rate Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 2007-2057, May.
    8. Juan M. Moraleda & Ton Vorst, 1996. "The Valuation of Interest Rate Derivatives: Empirical Evidence from the Spanish Market," Tinbergen Institute Discussion Papers 96-170/2, Tinbergen Institute.
    9. Falini, Jury, 2010. "Pricing caps with HJM models: The benefits of humped volatility," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1358-1367, December.
    10. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, March.
    11. Ramaprasad Bhar, 2010. "Stochastic Filtering with Applications in Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7736, September.
    12. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    13. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26, March.
    14. Jury Falini, 2009. "Pricing caps with HJM models: the benefits of humped volatility," Department of Economics University of Siena 563, Department of Economics, University of Siena.
    15. Camilla Landén & Tomas Björk, 2002. "On the construction of finite dimensional realizations for nonlinear forward rate models," Finance and Stochastics, Springer, vol. 6(3), pages 303-331.
    16. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.
    17. Bueno-Guerrero, Alberto & Moreno, Manuel & Navas, Javier F., 2016. "The stochastic string model as a unifying theory of the term structure of interest rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 217-237.
    18. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    19. Björk, Tomas, 2003. "On the Geometry of Interest Rate Models," SSE/EFI Working Paper Series in Economics and Finance 545, Stockholm School of Economics.
    20. Robert R. Bliss & Peter H. Ritchken, 1995. "Empirical tests of two state-variable HJM models," FRB Atlanta Working Paper 95-13, Federal Reserve Bank of Atlanta.

    More about this item

    Keywords

    interest rate claims; volatility humps;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:revdev:v:3:y:2000:i:3:p:237-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.