Regulatory independence and thermal power plant performance: evidence from India
Author
Abstract
Suggested Citation
DOI: 10.1007/s11149-021-09443-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sarangi, Gopal K. & Mishra, Arabinda & Chang, Youngho & Taghizadeh-Hesary, Farhad, 2019. "Indian electricity sector, energy security and sustainability: An empirical assessment," Energy Policy, Elsevier, vol. 135(C).
- Chikkatur, Ananth P. & Sagar, Ambuj D. & Abhyankar, Nikit & Sreekumar, N., 2007. "Tariff-based incentives for improving coal-power-plant efficiencies in India," Energy Policy, Elsevier, vol. 35(7), pages 3744-3758, July.
- Kumar, Surender & Jain, Rakesh Kumar, 2019.
"Carbon-sensitive meta-productivity growth and technological gap: An empirical analysis of Indian thermal power sector,"
Energy Economics, Elsevier, vol. 81(C), pages 104-116.
- Surender Kumar & Rakesh Kumar Jain, 2019. "Carbon-sensitive Meta-Productivity Growth and Technological Gap: An Empirical Analysis of Indian Thermal Power Sector," Working papers 297, Centre for Development Economics, Delhi School of Economics.
- Sahoo, Nihar R. & Mohapatra, Pratap K.J. & Sahoo, Biresh K. & Mahanty, Biswajit, 2017. "Rationality of energy efficiency improvement targets under the PAT scheme in India – A case of thermal power plants," Energy Economics, Elsevier, vol. 66(C), pages 279-289.
- Jindal, Abhinav & Nilakantan, Rahul, 2021. "Falling efficiency levels of Indian coal-fired power plants: A slacks-based analysis," Energy Economics, Elsevier, vol. 93(C).
- Wei, Chu & Löschel, Andreas & Liu, Bing, 2013. "An empirical analysis of the CO2 shadow price in Chinese thermal power enterprises," Energy Economics, Elsevier, vol. 40(C), pages 22-31.
- Yun Zhang & Robert Bartels, 1998. "The Effect of Sample Size on the Mean Efficiency in DEA with an Application to Electricity Distribution in Australia, Sweden and New Zealand," Journal of Productivity Analysis, Springer, vol. 9(3), pages 187-204, March.
- Anupama Sen and Tooraj Jamasb, 2012.
"Diversity in Unity: An Empirical Analysis of Electricity Deregulation in Indian States,"
The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
- Anupama Sen & Tooraj Jamasb, 2011. "Diversity in Unity: An Empirical Analysis of Electricity Deregulation in Indian States," The Energy Journal, , vol. 33(1), pages 83-130, January.
- Ghosh, Ranjan & Kathuria, Vinish, 2016. "The effect of regulatory governance on efficiency of thermal power generation in India: A stochastic frontier analysis," Energy Policy, Elsevier, vol. 89(C), pages 11-24.
- Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
- Kira R. Fabrizio & Nancy L. Rose & Catherine D. Wolfram, 2007.
"Do Markets Reduce Costs? Assessing the Impact of Regulatory Restructuring on US Electric Generation Efficiency,"
American Economic Review, American Economic Association, vol. 97(4), pages 1250-1277, September.
- Kira Markiewicz & Nancy L. Rose & Catherine Wolfram, 2004. "Do Markets Reduce Costs? Assessing the Impact of Regulatory Restructuring on U.S. Electric Generation Efficiency," NBER Working Papers 11001, National Bureau of Economic Research, Inc.
- Du, Limin & Mao, Jie, 2015. "Estimating the environmental efficiency and marginal CO2 abatement cost of coal-fired power plants in China," Energy Policy, Elsevier, vol. 85(C), pages 347-356.
- Kabir Malik, Maureen Cropper, Alexander Limonov and Anoop Singh, 2015. "The Impact of Electricity Sector Restructuring on Coal-fired Power Plants in India," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
- Dubash, Navroz K. & Rao, D. Narasimha, 2008. "Regulatory practice and politics: Lessons from independent regulation in Indian electricity," Utilities Policy, Elsevier, vol. 16(4), pages 321-331, December.
- Shrivastava, Naveen & Sharma, Seema & Chauhan, Kavita, 2012. "Efficiency assessment and benchmarking of thermal power plants in India," Energy Policy, Elsevier, vol. 40(C), pages 159-176.
- Kaoru Tone, 2013. "Resampling in DEA," GRIPS Discussion Papers 13-23, National Graduate Institute for Policy Studies.
- Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hou, Zheng & Roseta-Palma, Catarina & Ramalho, Joaquim J.S., 2024. "Can operational efficiency in the Portuguese electricity sector be improved? Yes, but..," Energy Policy, Elsevier, vol. 190(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jindal, Abhinav & Nilakantan, Rahul, 2021. "Falling efficiency levels of Indian coal-fired power plants: A slacks-based analysis," Energy Economics, Elsevier, vol. 93(C).
- Jindal, Abhinav & Nilakantan, Rahul & Sinha, Avik, 2024. "CO2 emissions abatement costs and drivers for Indian thermal power industry," Energy Policy, Elsevier, vol. 184(C).
- Du, Limin & Hanley, Aoife & Zhang, Ning, 2016. "Environmental technical efficiency, technology gap and shadow price of coal-fuelled power plants in China: A parametric meta-frontier analysis," Resource and Energy Economics, Elsevier, vol. 43(C), pages 14-32.
- Zhencheng Xing & Jigan Wang & Jie Zhang, 2017. "CO 2 Emission Performance, Mitigation Potential, and Marginal Abatement Cost of Industries Covered in China’s Nationwide Emission Trading Scheme: A Meta-Frontier Analysis," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
- Yu, Yanni & Qian, Tao & Du, Limin, 2017. "Carbon productivity growth, technological innovation, and technology gap change of coal-fired power plants in China," Energy Policy, Elsevier, vol. 109(C), pages 479-487.
- Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).
- Qingyou Yan & Yaxian Wang & Tomas Baležentis & Yikai Sun & Dalia Streimikiene, 2018. "Energy-Related CO 2 Emission in China’s Provincial Thermal Electricity Generation: Driving Factors and Possibilities for Abatement," Energies, MDPI, vol. 11(5), pages 1-25, April.
- Kabir Malik, Maureen Cropper, Alexander Limonov and Anoop Singh, 2015. "The Impact of Electricity Sector Restructuring on Coal-fired Power Plants in India," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
- Long, Xingle & Wu, Chao & Zhang, Jijian & Zhang, Jing, 2018. "Environmental efficiency for 192 thermal power plants in the Yangtze River Delta considering heterogeneity: A metafrontier directional slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3962-3971.
- Abdollah Hadi-Vencheh & Peter Wanke & Ali Jamshidi, 2020. "What Does Cost Structure Have to Say about Thermal Plant Energy Efficiency? The Case from Angola," Energies, MDPI, vol. 13(9), pages 1-25, May.
- Ghosh, Ranjan & Kathuria, Vinish, 2016. "The effect of regulatory governance on efficiency of thermal power generation in India: A stochastic frontier analysis," Energy Policy, Elsevier, vol. 89(C), pages 11-24.
- Nakaishi, Tomoaki, 2021. "Developing effective CO2 and SO2 mitigation strategy based on marginal abatement costs of coal-fired power plants in China," Applied Energy, Elsevier, vol. 294(C).
- Renjie Yu & Peng Yuan & Fandi Yang & Gongxiong Jiang, 2023. "Effects of Vertical Unbundling on the Operational and Environmental Efficiency of Chinese Thermal Power Firms," Energies, MDPI, vol. 16(21), pages 1-22, October.
- Chao Qi & Yongrok Choi, 2019. "A Study of the Feasibility of International ETS Cooperation between Shanghai and Korea from Environmental Efficiency and CO 2 Marginal Abatement Cost Perspectives," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
- Nakaishi, Tomoaki & Takayabu, Hirotaka & Eguchi, Shogo, 2021. "Environmental efficiency analysis of China's coal-fired power plants considering heterogeneity in power generation company groups," Energy Economics, Elsevier, vol. 102(C).
- Jamasb, Tooraj & Llorca, Manuel & Khetrapal, Pavan & Thakur, Tripta, 2021. "Institutions and performance of regulated firms: Evidence from electricity distribution in India," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 68-82.
- Du, Limin & Mao, Jie, 2015. "Estimating the environmental efficiency and marginal CO2 abatement cost of coal-fired power plants in China," Energy Policy, Elsevier, vol. 85(C), pages 347-356.
- Sugathan, Anish & Malghan, Deepak & Chandrashekar, S. & Sinha, Deepak K., 2019. "Downstream electric utility restructuring and upstream generation efficiency: Productivity dynamics of Indian coal and gas based electricity generators," Energy, Elsevier, vol. 178(C), pages 832-852.
- Ma, Chunbo & Hailu, Atakelty & You, Chaoying, 2019. "A critical review of distance function based economic research on China’s marginal abatement cost of carbon dioxide emissions," Energy Economics, Elsevier, vol. 84(C).
- Yongrok Choi & Yunning Ma & Yu Zhao & Hyoungsuk Lee, 2023. "Inequality in Fossil Fuel Power Plants in China: A Perspective of Efficiency and Abatement Cost," Sustainability, MDPI, vol. 15(5), pages 1-15, March.
More about this item
Keywords
Electricity generation performance; Meta-frontier; Non-radial directional distance function; Regulatory independence;All these keywords.
JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C34 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Truncated and Censored Models; Switching Regression Models
- L32 - Industrial Organization - - Nonprofit Organizations and Public Enterprise - - - Public Enterprises; Public-Private Enterprises
- L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation
- L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
- L98 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Government Policy
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:regeco:v:61:y:2022:i:1:d:10.1007_s11149-021-09443-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.