IDEAS home Printed from https://ideas.repec.org/a/kap/poprpr/v41y2022i3d10.1007_s11113-021-09674-3.html
   My bibliography  Save this article

The Role of Chance in the Census Bureau Database Reconstruction Experiment

Author

Listed:
  • Steven Ruggles

    (University of Minnesota)

  • David Riper

    (University of Minnesota)

Abstract

The Census Bureau plans a new approach to disclosure control for the 2020 census that will add noise to every statistic the agency produces for places below the state level. The Bureau argues the new approach is needed because the confidentiality of census responses is threatened by “database reconstruction,” a technique for inferring individual-level responses from tabular data. The Census Bureau constructed hypothetical individual-level census responses from public 2010 tabular data and matched them to internal census records and to outside sources. The Census Bureau did not compare these results to a null model to demonstrate that their success in matching would not be expected by chance. This is analogous to conducting a clinical trial without a control group. We implement a simple simulation to assess how many matches would be expected by chance. We demonstrate that most matches reported by the Census Bureau experiment would be expected randomly. To extend the metaphor of the clinical trial, the treatment and the placebo produced similar outcomes. The database reconstruction experiment therefore fails to demonstrate a credible threat to confidentiality.

Suggested Citation

  • Steven Ruggles & David Riper, 2022. "The Role of Chance in the Census Bureau Database Reconstruction Experiment," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 781-788, June.
  • Handle: RePEc:kap:poprpr:v:41:y:2022:i:3:d:10.1007_s11113-021-09674-3
    DOI: 10.1007/s11113-021-09674-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11113-021-09674-3
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11113-021-09674-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santos-Lozada, Alexis R & Perez-Rivera, Danilo T & Bhat, Aarti C., 2020. "How differential privacy will affect our understanding of population growth in the United States," SocArXiv pmux7, Center for Open Science.
    2. Laura McKenna, 2018. "Disclosure Avoidance Techniques Used for the 1970 through 2010 Decennial Censuses of Population and Housing," Working Papers 18-47, Center for Economic Studies, U.S. Census Bureau.
    3. Alexis R. Santos-Lozada & Jeffrey T. Howard & Ashton M. Verdery, 2020. "How differential privacy will affect our understanding of health disparities in the United States," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(24), pages 13405-13412, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ron S. Jarmin & John M. Abowd & Robert Ashmead & Ryan Cumings-Menon & Nathan Goldschlag & Michael B. Hawes & Sallie Ann Keller & Daniel Kifer & Philip Leclerc & Jerome P. Reiter & Rolando A. Rodrígue, 2023. "An in-depth examination of requirements for disclosure risk assessment," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(43), pages 2220558120-, October.
    2. Claire McKay Bowen & Joshua Snoke & Aaron R. Williams & Andrés F. Barrientos, 2024. "The Case for Researching Applied Privacy Enhancing Technologies," NBER Chapters, in: Data Privacy Protection and the Conduct of Applied Research: Methods, Approaches and their Consequences, National Bureau of Economic Research, Inc.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sigurd Dyrting & Abraham Flaxman & Ethan Sharygin, 2022. "Reconstruction of age distributions from differentially private census data," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(6), pages 2311-2329, December.
    2. Heng Xu & Nan Zhang, 2022. "Implications of Data Anonymization on the Statistical Evidence of Disparity," Management Science, INFORMS, vol. 68(4), pages 2600-2618, April.
    3. Thayer Alshaabi & David R Dewhurst & James P Bagrow & Peter S Dodds & Christopher M Danforth, 2021. "The sociospatial factors of death: Analyzing effects of geospatially-distributed variables in a Bayesian mortality model for Hong Kong," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-20, March.
    4. John M. Abowd & Robert Ashmead & Ryan Cumings-Menon & Simson Garfinkel & Micah Heineck & Christine Heiss & Robert Johns & Daniel Kifer & Philip Leclerc & Ashwin Machanavajjhala & Brett Moran & William, 2022. "The 2020 Census Disclosure Avoidance System TopDown Algorithm," Papers 2204.08986, arXiv.org.
    5. Richelle L. Winkler & Jaclyn L. Butler & Katherine J. Curtis & David Egan-Robertson, 2022. "Differential Privacy and the Accuracy of County-Level Net Migration Estimates," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(2), pages 417-435, April.
    6. John M Abowd & Michael B Hawes, 2022. "Confidentiality Protection in the 2020 US Census of Population and Housing," Papers 2206.03524, arXiv.org, revised Dec 2022.
    7. J. Tom Mueller & Alexis R. Santos-Lozada, 2022. "The 2020 US Census Differential Privacy Method Introduces Disproportionate Discrepancies for Rural and Non-White Populations," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(4), pages 1417-1430, August.
    8. Bi, Xuan & Shen, Xiaotong, 2023. "Distribution-invariant differential privacy," Journal of Econometrics, Elsevier, vol. 235(2), pages 444-453.
    9. John M. Abowd & William R. Bell & J. David Brown & Michael B. Hawes & Misty L. Heggeness & Andrew D. Keller & Vincent T. Mule Jr. & Joseph L. Schafer & Matthew Spence & Lawrence Warren & Moises Yi, 2020. "Determination of the 2020 U.S. Citizen Voting Age Population (CVAP) Using Administrative Records and Statistical Methodology Technical Report," Working Papers 20-33, Center for Economic Studies, U.S. Census Bureau.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:poprpr:v:41:y:2022:i:3:d:10.1007_s11113-021-09674-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.