IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v17y2017i2d10.1007_s11067-016-9328-8.html
   My bibliography  Save this article

An Approach for Integrating Valuable Flexibility During Conceptual Design of Networks

Author

Listed:
  • Y. G. Melese

    (Delft University of Technology)

  • P. W. Heijnen

    (Delft University of Technology)

  • R. M. Stikkelman

    (Delft University of Technology)

  • P. M. Herder

    (Delft University of Technology)

Abstract

Energy and industrial networks such as pipeline-based carbon capture and storage infrastructures and (bio)gas infrastructures are designed and developed in the presence of major uncertainties. Conventional design methods are based on deterministic forecasts of most likely scenarios and produce networks that are optimal under those scenarios. However, future design requirements and operational environments are uncertain and networks designed based on deterministic forecasts provide sub-optimal performance. This study introduces a method based on the flexible design approach and the concept of real options to deal with uncertainties during conceptual design of networks. The proposed method uses a graph theoretical network model and Monte Carlo simulations to explore candidate designs, and identify and integrate flexibility enablers to pro-actively deal with uncertainties. Applying the method on a hypothetical network, it is found that integrating flexibility enablers (real options) such as redundant capacity and length can help to enhance the long term performance of networks. When compared to deterministic rigid designs, the flexible design enables cost effective expansions as uncertainty unfolds in the future.

Suggested Citation

  • Y. G. Melese & P. W. Heijnen & R. M. Stikkelman & P. M. Herder, 2017. "An Approach for Integrating Valuable Flexibility During Conceptual Design of Networks," Networks and Spatial Economics, Springer, vol. 17(2), pages 317-341, June.
  • Handle: RePEc:kap:netspa:v:17:y:2017:i:2:d:10.1007_s11067-016-9328-8
    DOI: 10.1007/s11067-016-9328-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-016-9328-8
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-016-9328-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Desai, Jitamitra & Sen, Suvrajeet, 2010. "A global optimization algorithm for reliable network design," European Journal of Operational Research, Elsevier, vol. 200(1), pages 1-8, January.
    2. Mian Li & Steven Gabriel & Yohan Shim & Shapour Azarm, 2011. "Interval Uncertainty-Based Robust Optimization for Convex and Non-Convex Quadratic Programs with Applications in Network Infrastructure Planning," Networks and Spatial Economics, Springer, vol. 11(1), pages 159-191, March.
    3. Bi Chen & William Lam & Agachai Sumalee & Qingquan Li & Hu Shao & Zhixiang Fang, 2013. "Finding Reliable Shortest Paths in Road Networks Under Uncertainty," Networks and Spatial Economics, Springer, vol. 13(2), pages 123-148, June.
    4. Fangxia Zhao & Jianjun Wu & Huijun Sun & Ziyou Gao & Ronghui Liu, 2016. "Population-driven Urban Road Evolution Dynamic Model," Networks and Spatial Economics, Springer, vol. 16(4), pages 997-1018, December.
    5. Byung Chung & Tao Yao & Chi Xie & Andreas Thorsen, 2011. "Robust Optimization Model for a Dynamic Network Design Problem Under Demand Uncertainty," Networks and Spatial Economics, Springer, vol. 11(2), pages 371-389, June.
    6. P. W. Heijnen & A. Ligtvoet & R. M. Stikkelman & P. M. Herder, 2014. "Maximising the Worth of Nascent Networks," Networks and Spatial Economics, Springer, vol. 14(1), pages 27-46, March.
    7. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hua Sun & Ziyou Gao & W. Szeto & Jiancheng Long & Fangxia Zhao, 2014. "A Distributionally Robust Joint Chance Constrained Optimization Model for the Dynamic Network Design Problem under Demand Uncertainty," Networks and Spatial Economics, Springer, vol. 14(3), pages 409-433, December.
    2. Zhaomiao Guo & Yueyue Fan, 2017. "A Stochastic Multi-agent Optimization Model for Energy Infrastructure Planning under Uncertainty in An Oligopolistic Market," Networks and Spatial Economics, Springer, vol. 17(2), pages 581-609, June.
    3. Christina Büsing & Sigrid Knust & Xuan Thanh Le, 2018. "Trade-off between robustness and cost for a storage loading problem: rule-based scenario generation," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 339-365, December.
    4. Donghai Wang & Qiuhong Zhao, 2020. "A Simultaneous Optimization Model for Airport Network Slot Allocation under Uncertain Capacity," Sustainability, MDPI, vol. 12(14), pages 1-14, July.
    5. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    6. Khaled, Oumaima & Minoux, Michel & Mousseau, Vincent & Michel, Stéphane & Ceugniet, Xavier, 2018. "A multi-criteria repair/recovery framework for the tail assignment problem in airlines," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 137-151.
    7. Irawan, Chandra Ade & Jones, Dylan & Hofman, Peter S. & Zhang, Lina, 2023. "Integrated strategic energy mix and energy generation planning with multiple sustainability criteria and hierarchical stakeholders," European Journal of Operational Research, Elsevier, vol. 308(2), pages 864-883.
    8. Hashem Omrani & Farzane Adabi & Narges Adabi, 2017. "Designing an efficient supply chain network with uncertain data: a robust optimization—data envelopment analysis approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 816-828, July.
    9. Jihee Han & KwangSup Shin, 2016. "Evaluation mechanism for structural robustness of supply chain considering disruption propagation," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 135-151, January.
    10. Tsai, Jung-Fa, 2007. "An optimization approach for supply chain management models with quantity discount policy," European Journal of Operational Research, Elsevier, vol. 177(2), pages 982-994, March.
    11. Xuejie Bai & Yankui Liu, 2016. "Robust optimization of supply chain network design in fuzzy decision system," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1131-1149, December.
    12. Schönlein, Michael & Makuschewitz, Thomas & Wirth, Fabian & Scholz-Reiter, Bernd, 2013. "Measurement and optimization of robust stability of multiclass queueing networks: Applications in dynamic supply chains," European Journal of Operational Research, Elsevier, vol. 229(1), pages 179-189.
    13. Davood Shishebori & Lawrence Snyder & Mohammad Jabalameli, 2014. "A Reliable Budget-Constrained FL/ND Problem with Unreliable Facilities," Networks and Spatial Economics, Springer, vol. 14(3), pages 549-580, December.
    14. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    15. Sebastian Rachuba & Brigitte Werners, 2017. "A fuzzy multi-criteria approach for robust operating room schedules," Annals of Operations Research, Springer, vol. 251(1), pages 325-350, April.
    16. Roy, Bernard, 2010. "Robustness in operational research and decision aiding: A multi-faceted issue," European Journal of Operational Research, Elsevier, vol. 200(3), pages 629-638, February.
    17. Boddiford, Ashley N. & Kaufman, Daniel E. & Skipper, Daphne E. & Uhan, Nelson A., 2023. "Approximating a linear multiplicative objective in watershed management optimization," European Journal of Operational Research, Elsevier, vol. 305(2), pages 547-561.
    18. Kumar Muthuraman & Tarik Aouam & Ronald Rardin, 2008. "Regulation of Natural Gas Distribution Using Policy Benchmarks," Operations Research, INFORMS, vol. 56(5), pages 1131-1145, October.
    19. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    20. Hanks, Robert W. & Weir, Jeffery D. & Lunday, Brian J., 2017. "Robust goal programming using different robustness echelons via norm-based and ellipsoidal uncertainty sets," European Journal of Operational Research, Elsevier, vol. 262(2), pages 636-646.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:17:y:2017:i:2:d:10.1007_s11067-016-9328-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.