IDEAS home Printed from https://ideas.repec.org/a/kap/iaecre/v18y2012i3p287-29710.1007-s11294-012-9361-4.html
   My bibliography  Save this article

Estimation of Concentration Measures and Their Standard Errors for Income Distributions in Poland

Author

Listed:
  • Alina Jędrzejczak

Abstract

Measures of concentration (inequality) are often used in the analysis of income and wage size distributions. Among, them the Gini and Zenga coefficients are of greatest importance. It is well known that income inequality in Poland increased significantly in the period of transformation from a centrally planned economy to a market economy. High income inequality can be a source of serious problems, such as increasing poverty, social stratification, and polarization. Therefore, it seems especially important to present reliable estimates of income inequality measures for a population of households in Poland in different divisions. In this paper, some estimation methods for Gini and Zenga concentration measures are presented together with their application to the analysis of income distributions in Poland by socio-economic groups. The basis for the calculations was individual data coming from the Polish Household Budget Survey conducted by the Central Statistical Office. The standard errors of Gini and Zenga coefficients were estimated by means of the bootstrap and the parametric approach based on the Dagum model. Copyright The Author(s) 2012

Suggested Citation

  • Alina Jędrzejczak, 2012. "Estimation of Concentration Measures and Their Standard Errors for Income Distributions in Poland," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 18(3), pages 287-297, August.
  • Handle: RePEc:kap:iaecre:v:18:y:2012:i:3:p:287-297:10.1007/s11294-012-9361-4
    DOI: 10.1007/s11294-012-9361-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11294-012-9361-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11294-012-9361-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davidson, Russell, 2009. "Reliable inference for the Gini index," Journal of Econometrics, Elsevier, vol. 150(1), pages 30-40, May.
    2. Dagum, Camilo, 1997. "A New Approach to the Decomposition of the Gini Income Inequality Ratio," Empirical Economics, Springer, vol. 22(4), pages 515-531.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ogwang Tomson, 2014. "A Convenient Method of Decomposing the Gini Index by Population Subgroups," Journal of Official Statistics, Sciendo, vol. 30(1), pages 91-105, March.
    2. St鰨ane Mussard & Patrick Richard, 2012. "Linking Yitzhaki's and Dagum's Gini decompositions," Applied Economics, Taylor & Francis Journals, vol. 44(23), pages 2997-3010, August.
    3. Ellis Scharfenaker, Markus P.A. Schneider, 2019. "Labor Market Segmentation and the Distribution of Income: New Evidence from Internal Census Bureau Data," Working Paper Series, Department of Economics, University of Utah 2019_08, University of Utah, Department of Economics.
    4. Wang, Zheng-Xin & Jv, Yue-Qi, 2023. "Revisiting income inequality among households: New evidence from the Chinese Household Income Project," China Economic Review, Elsevier, vol. 81(C).
    5. Bou Dib, Jonida & Alamsyah, Zulkifli & Qaim, Matin, 2018. "Land-use change and income inequality in rural Indonesia," Forest Policy and Economics, Elsevier, vol. 94(C), pages 55-66.
    6. Francesco Andreoli & Eugenio Peluso, 2016. "So close yet so unequal: Reconsidering spatial inequality in U.S. cities," Working Papers 21/2016, University of Verona, Department of Economics.
    7. Stéphane Mussard & Kuan Xu, 2006. "Multidimensional Decomposition of the Sen Index: Some Further Thoughts," Cahiers de recherche 06-08, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    8. Charles Condevaux & Stéphane Mussard & Téa Ouraga & Guillaume Zambrano, 2020. "Generalized Gini linear and quadratic discriminant analyses," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 219-236, August.
    9. Luc Savard & Stéphane Mussard, 2005. "Micro-simulation and Multi-decomposition: A Case Study: Philippines," Cahiers de recherche 05-02, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    10. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    11. Lee, Chien-Chiang & Qian, Anqi, 2024. "Regional differences, dynamic evolution, and obstacle factors of cultivated land ecological security in China," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    12. Pan Wenjie & Mei Daniel Weiyue, 2022. "Comprehensive Evaluation of China's Green Urbanization Level--Measurement Based on Provincial Panel Data," International Business Research, Canadian Center of Science and Education, vol. 15(9), pages 1-16, September.
    13. William E. Griffiths and Gholamreza Hajargasht, 2012. "GMM Estimation of Mixtures from Grouped Data:," Department of Economics - Working Papers Series 1148, The University of Melbourne.
    14. Qiangyi Li & Jiexiao Ge & Mingyu Huang & Xiaoyu Wu & Houbao Fan, 2024. "Uncovering the Triple Synergy of New-Type Urbanization, Greening and Digitalization in China," Land, MDPI, vol. 13(7), pages 1-24, July.
    15. Xiaofeng Lv & Gupeng Zhang & Guangyu Ren, 2017. "Gini index estimation for lifetime data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 275-304, April.
    16. Long Qian & Yunjie Zhou & Ying Sun, 2023. "Regional Differences, Distribution Dynamics, and Convergence of the Green Total Factor Productivity of China’s Cities under the Dual Carbon Targets," Sustainability, MDPI, vol. 15(17), pages 1-26, August.
    17. Allanson, Paul, 2017. "Monitoring income-related health differences between regions in Great Britain: A new measure for ordinal health data," Social Science & Medicine, Elsevier, vol. 175(C), pages 72-80.
    18. Nan Li & Beibei Shi & Rong Kang, 2023. "Analysis of the Coupling Effect and Space-Time Difference between China’s Digital Economy Development and Carbon Emissions Reduction," IJERPH, MDPI, vol. 20(1), pages 1-25, January.
    19. Yaoyao Wang & Yuanpei Kuang, 2023. "Evaluation, Regional Disparities and Driving Mechanisms of High-Quality Agricultural Development in China," Sustainability, MDPI, vol. 15(7), pages 1-20, April.
    20. Zhao, Feifei & Hu, Zheng & Yi, Ping & Zhao, Xu, 2024. "Does environmental decentralization improve industrial ecology? Evidence from China's Yangtze River Economic Belt," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 1250-1270.

    More about this item

    Keywords

    Income distribution; Income inequality; Variance estimation; C10; J30;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • J30 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:iaecre:v:18:y:2012:i:3:p:287-297:10.1007/s11294-012-9361-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.