IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v3y2000i4p287-297.html
   My bibliography  Save this article

Diagnosis of MRSA with neural networks and logistic regression approach

Author

Listed:
  • Jen Shang
  • Yu-sen Lin
  • Angella Goetz

Abstract

Antibiotic-resistant pathogens are increasingly prevalent in the hospitals and community. A timely and accurate diagnosis of the infection would greatly help physicians effectively treat patients. In this research we investigate the potential of using neural networks (NN) and logistic regression (LR) approach in diagnosing methicillin-resistant Staphylococcus aureus (MRSA). Receiver-Operating Characteristic (ROC) curve and the cross-validation method are used to compare the performances of both systems. We found that NN is better than the logistic regression approach, in terms of both the discriminatory power and the robustness. With modeling flexibility inherent in its techniques, NN is effective in dealing with MRSA and other classification problems involving large numbers of variables and interaction complexity. On the other hand, logistic regression in our case is slightly inferior, offers more clarity and less perplexity. It could be a method of choice when fewer variables are involved and/or justification of the results is desired. Copyright Kluwer Academic Publishers 2000

Suggested Citation

  • Jen Shang & Yu-sen Lin & Angella Goetz, 2000. "Diagnosis of MRSA with neural networks and logistic regression approach," Health Care Management Science, Springer, vol. 3(4), pages 287-297, September.
  • Handle: RePEc:kap:hcarem:v:3:y:2000:i:4:p:287-297
    DOI: 10.1023/A:1019018129822
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1019018129822
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1019018129822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    2. De Angelis, Vanda & Felici, Giovanni & Impelluso, Paolo, 2003. "Integrating simulation and optimisation in health care centre management," European Journal of Operational Research, Elsevier, vol. 150(1), pages 101-114, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:3:y:2000:i:4:p:287-297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.