Author
Listed:
- Amir Khosheghbal
(University of Massachusetts Amherst)
- Peter J. Haas
(University of Massachusetts Amherst)
- Chaitra Gopalappa
(University of Massachusetts Amherst)
Abstract
As social and economic conditions are key determinants of HIV, the United States ‘National HIV/AIDS Strategy (NHAS)’, in addition to care and treatment, aims to address mental health, unemployment, food insecurity, and housing instability, as part of its strategic plan for the ‘Ending the HIV Epidemic’ initiative. Although mechanistic models of HIV play a key role in evaluating intervention strategies, social conditions are typically not part of the modeling framework. Challenges include the unavailability of coherent statistical data for social conditions and behaviors. We developed a method, combining undirected graphical modeling with copula methods, to integrate disparate data sources, to estimate joint probability distributions for social conditions and behaviors. We incorporated these in a national-level network model, Progression and Transmission of HIV (PATH 4.0), to simulate behaviors as functions of social conditions and HIV transmissions as a function of behaviors. As a demonstration for the potential applications of such a model, we conducted two hypothetical what-if intervention analyses to estimate the impact of an ideal 100% efficacious intervention strategy. The first analysis modeled care behavior (using viral suppression as proxy) as a function of depression, neighborhood, housing, poverty, education, insurance, and employment status. The second modeled sexual behaviors (number of partners and condom-use) as functions of employment, housing, poverty, and education status, among persons who exchange sex. HIV transmissions and disease progression were then simulated as functions of behaviors to estimate incidence reductions. Social determinants are key drivers of many infectious and non-infectious diseases. Our work enables the development of decision support tools to holistically evaluate the syndemics of health and social inequity.
Suggested Citation
Amir Khosheghbal & Peter J. Haas & Chaitra Gopalappa, 2025.
"Mechanistic modeling of social conditions in disease-prediction simulations via copulas and probabilistic graphical models: HIV case study,"
Health Care Management Science, Springer, vol. 28(1), pages 28-49, March.
Handle:
RePEc:kap:hcarem:v:28:y:2025:i:1:d:10.1007_s10729-024-09694-3
DOI: 10.1007/s10729-024-09694-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:28:y:2025:i:1:d:10.1007_s10729-024-09694-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.