IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v25y2022i4d10.1007_s10729-022-09599-z.html
   My bibliography  Save this article

Inverse optimization on hierarchical networks: an application to breast cancer clinical pathways

Author

Listed:
  • Timothy C. Y. Chan

    (University of Toronto)

  • Katharina Forster

    (Ontario Health (Cancer Care Ontario))

  • Steven Habbous

    (Ontario Health (Cancer Care Ontario))

  • Claire Holloway

    (Ontario Health (Cancer Care Ontario))

  • Luciano Ieraci

    (Ontario Health (Cancer Care Ontario))

  • Yusuf Shalaby

    (University of Toronto)

  • Nasrin Yousefi

    (Queen’s University)

Abstract

Clinical pathways are standardized processes that outline the steps required for managing a specific disease. However, patient pathways often deviate from clinical pathways. Measuring the concordance of patient pathways to clinical pathways is important for health system monitoring and informing quality improvement initiatives. In this paper, we develop an inverse optimization-based approach to measuring pathway concordance in breast cancer, a complex disease. We capture this complexity in a hierarchical network that models the patient’s journey through the health system. A novel inverse shortest path model is formulated and solved on this hierarchical network to estimate arc costs, which are used to form a concordance metric to measure the distance between patient pathways and shortest paths (i.e., clinical pathways). Using real breast cancer patient data from Ontario, Canada, we demonstrate that our concordance metric has a statistically significant association with survival for all breast cancer patient subgroups. We also use it to quantify the extent of patient pathway discordances across all subgroups, finding that patients undertaking additional clinical activities constitute the primary driver of discordance in the population.

Suggested Citation

  • Timothy C. Y. Chan & Katharina Forster & Steven Habbous & Claire Holloway & Luciano Ieraci & Yusuf Shalaby & Nasrin Yousefi, 2022. "Inverse optimization on hierarchical networks: an application to breast cancer clinical pathways," Health Care Management Science, Springer, vol. 25(4), pages 590-622, December.
  • Handle: RePEc:kap:hcarem:v:25:y:2022:i:4:d:10.1007_s10729-022-09599-z
    DOI: 10.1007/s10729-022-09599-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-022-09599-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-022-09599-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schmidt, Ingrid & Thor, Johan & Davidson, Thomas & Nilsson, Fredrik & Carlsson, Christina, 2018. "The national program on standardized cancer care pathways in Sweden: Observations and findings half way through," Health Policy, Elsevier, vol. 122(9), pages 945-948.
    2. Timothy C. Y. Chan & Taewoo Lee & Daria Terekhov, 2019. "Inverse Optimization: Closed-Form Solutions, Geometry, and Goodness of Fit," Management Science, INFORMS, vol. 65(3), pages 1115-1135, March.
    3. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    4. Ravindra K. Ahuja & James B. Orlin, 2001. "Inverse Optimization," Operations Research, INFORMS, vol. 49(5), pages 771-783, October.
    5. Jianzhong Zhang & Mao Cai, 1998. "Inverse problem of minimum cuts," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 47(1), pages 51-58, February.
    6. Marvin D. Troutt & Wan-Kai Pang & Shui-Hung Hou, 2006. "Behavioral Estimation of Mathematical Programming Objective Function Coefficients," Management Science, INFORMS, vol. 52(3), pages 422-434, March.
    7. Clemens Heuberger, 2004. "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 329-361, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy C. Y. Chan & Maria Eberg & Katharina Forster & Claire Holloway & Luciano Ieraci & Yusuf Shalaby & Nasrin Yousefi, 2022. "An Inverse Optimization Approach to Measuring Clinical Pathway Concordance," Management Science, INFORMS, vol. 68(3), pages 1882-1903, March.
    2. Rishabh Gupta & Qi Zhang, 2022. "Decomposition and Adaptive Sampling for Data-Driven Inverse Linear Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2720-2735, September.
    3. Merve Bodur & Timothy C. Y. Chan & Ian Yihang Zhu, 2022. "Inverse Mixed Integer Optimization: Polyhedral Insights and Trust Region Methods," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1471-1488, May.
    4. Jonathan Yu-Meng Li, 2021. "Inverse Optimization of Convex Risk Functions," Management Science, INFORMS, vol. 67(11), pages 7113-7141, November.
    5. Ghobadi, Kimia & Mahmoudzadeh, Houra, 2021. "Inferring linear feasible regions using inverse optimization," European Journal of Operational Research, Elsevier, vol. 290(3), pages 829-843.
    6. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    7. Roozbeh Qorbanian & Nils Lohndorf & David Wozabal, 2024. "Valuation of Power Purchase Agreements for Corporate Renewable Energy Procurement," Papers 2403.08846, arXiv.org.
    8. Timothy C. Y. Chan & Taewoo Lee & Daria Terekhov, 2019. "Inverse Optimization: Closed-Form Solutions, Geometry, and Goodness of Fit," Management Science, INFORMS, vol. 65(3), pages 1115-1135, March.
    9. Shi Yu & Haoran Wang & Chaosheng Dong, 2020. "Learning Risk Preferences from Investment Portfolios Using Inverse Optimization," Papers 2010.01687, arXiv.org, revised Feb 2021.
    10. Chan, Timothy C.Y. & Kaw, Neal, 2020. "Inverse optimization for the recovery of constraint parameters," European Journal of Operational Research, Elsevier, vol. 282(2), pages 415-427.
    11. Bennet Gebken & Sebastian Peitz, 2021. "Inverse multiobjective optimization: Inferring decision criteria from data," Journal of Global Optimization, Springer, vol. 80(1), pages 3-29, May.
    12. Chan, Timothy C.Y. & Lee, Taewoo, 2018. "Trade-off preservation in inverse multi-objective convex optimization," European Journal of Operational Research, Elsevier, vol. 270(1), pages 25-39.
    13. Abumoslem Mohammadi & Javad Tayyebi, 2019. "Maximum Capacity Path Interdiction Problem with Fixed Costs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-21, August.
    14. Nguyen, Kien Trung & Hung, Nguyen Thanh, 2021. "The minmax regret inverse maximum weight problem," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    15. Zeynep Erkin & Matthew D. Bailey & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2010. "Eliciting Patients' Revealed Preferences: An Inverse Markov Decision Process Approach," Decision Analysis, INFORMS, vol. 7(4), pages 358-365, December.
    16. Chassein, André & Goerigk, Marc, 2018. "Variable-sized uncertainty and inverse problems in robust optimization," European Journal of Operational Research, Elsevier, vol. 264(1), pages 17-28.
    17. Vincent Mousseau & Özgür Özpeynirci & Selin Özpeynirci, 2018. "Inverse multiple criteria sorting problem," Annals of Operations Research, Springer, vol. 267(1), pages 379-412, August.
    18. T. R. Wang & N. Pedroni & E. Zio & V. Mousseau, 2020. "Identification of Protective Actions to Reduce the Vulnerability of Safety‐Critical Systems to Malevolent Intentional Acts: An Optimization‐Based Decision‐Making Approach," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 565-587, March.
    19. Chen, Lu & Chen, Yuyi & Langevin, André, 2021. "An inverse optimization approach for a capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1087-1098.
    20. Bucarey, Víctor & Labbé, Martine & Morales, Juan M. & Pineda, Salvador, 2021. "An exact dynamic programming approach to segmented isotonic regression," Omega, Elsevier, vol. 105(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:25:y:2022:i:4:d:10.1007_s10729-022-09599-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.