IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v25y2022i2d10.1007_s10729-021-09589-7.html
   My bibliography  Save this article

Data envelopment analysis efficiency in the public sector using provider and customer opinion: An application to the Spanish health system

Author

Listed:
  • Jesús A. Tapia

    (University of Valladolid)

  • Bonifacio Salvador

    (University of Valladolid)

Abstract

Measuring the relative efficiency of a finite fixed set of service-producing units (hospitals, state services, libraries, banks,...) is an important purpose of Data Envelopment Analysis (DEA). We illustrate an innovative way to measure this efficiency using stochastic indexes of the quality from these services. The indexes obtained from the opinion-satisfaction of the customers are estimators, from the statistical view point, of the quality of the service received (outputs); while, the quality of the offered service is estimated with opinion-satisfaction indexes of service providers (inputs). The estimation of these indicators is only possible by asking a customer and provider sample, in each service, through surveys. The technical efficiency score, obtained using the classic DEA models and estimated quality indicators, is an estimator of the unknown population efficiency that would be obtained if in each one of the services, interviews from all their customers and all their providers were available. With the object of achieving the best precision in the estimate, we propose results to determine the sample size of customers and providers needed so that with their answers can achieve a fixed accuracy in the estimation of the population efficiency of these service-producing units through the use of a novel one bootstrap confidence interval. Using this bootstrap methodology and quality opinion indexes obtained from two surveys, one of doctors and another of patients, we analyze the efficiency in the health care system of Spain.

Suggested Citation

  • Jesús A. Tapia & Bonifacio Salvador, 2022. "Data envelopment analysis efficiency in the public sector using provider and customer opinion: An application to the Spanish health system," Health Care Management Science, Springer, vol. 25(2), pages 333-346, June.
  • Handle: RePEc:kap:hcarem:v:25:y:2022:i:2:d:10.1007_s10729-021-09589-7
    DOI: 10.1007/s10729-021-09589-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-021-09589-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-021-09589-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), 2011. "Handbook on Data Envelopment Analysis," International Series in Operations Research and Management Science, Springer, number 978-1-4419-6151-8, April.
    2. Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
    3. De Witte, Kristof & Geys, Benny, 2013. "Citizen coproduction and efficient public good provision: Theory and evidence from local public libraries," European Journal of Operational Research, Elsevier, vol. 224(3), pages 592-602.
    4. Cristian Barra & Roberto Zotti, 2016. "Measuring Efficiency in Higher Education: An Empirical Study Using a Bootstrapped Data Envelopment Analysis," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 22(1), pages 11-33, February.
    5. Bernardino Benito & José Solana & María-Rocío Moreno, 2014. "Explaining efficiency in municipal services providers," Journal of Productivity Analysis, Springer, vol. 42(3), pages 225-239, December.
    6. Christopher Hammond, 2002. "Efficiency in the provision of public services: a data envelopment analysis of UK public library systems," Applied Economics, Taylor & Francis Journals, vol. 34(5), pages 649-657.
    7. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    8. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    9. Shiva Zandkarimkhani & Hassan Mina & Mehdi Biuki & Kannan Govindan, 2020. "A chance constrained fuzzy goal programming approach for perishable pharmaceutical supply chain network design," Annals of Operations Research, Springer, vol. 295(1), pages 425-452, December.
    10. Jesús Alberto Tapia & Bonifacio Salvador & Jesús María Rodríguez, 2018. "Data envelopment analysis in satisfaction survey research: sample size problem," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(7), pages 1096-1104, July.
    11. Assaf, A., 2010. "Bootstrapped scale efficiency measures of UK airports," Journal of Air Transport Management, Elsevier, vol. 16(1), pages 42-44.
    12. W. Diewert, 2011. "Measuring productivity in the public sector: some conceptual problems," Journal of Productivity Analysis, Springer, vol. 36(2), pages 177-191, October.
    13. O. B. Olesen & N. C. Petersen, 1995. "Chance Constrained Efficiency Evaluation," Management Science, INFORMS, vol. 41(3), pages 442-457, March.
    14. Chowdhury, Hedayet & Zelenyuk, Valentin, 2016. "Performance of hospital services in Ontario: DEA with truncated regression approach," Omega, Elsevier, vol. 63(C), pages 111-122.
    15. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2006. "Introduction to Data Envelopment Analysis and Its Uses," Springer Books, Springer, number 978-0-387-29122-2, January.
    16. David J. Mayston, 2017. "Data envelopment analysis, endogeneity and the quality frontier for public services," Annals of Operations Research, Springer, vol. 250(1), pages 185-203, March.
    17. Shwartz, Michael & Burgess, James F. & Zhu, Joe, 2016. "A DEA based composite measure of quality and its associated data uncertainty interval for health care provider profiling and pay-for-performance," European Journal of Operational Research, Elsevier, vol. 253(2), pages 489-502.
    18. Førsund, Finn R., 2017. "Measuring effectiveness of production in the public sector," Omega, Elsevier, vol. 73(C), pages 93-103.
    19. Korhonen, Pekka & Tainio, Risto & Wallenius, Jyrki, 2001. "Value efficiency analysis of academic research," European Journal of Operational Research, Elsevier, vol. 130(1), pages 121-132, April.
    20. Laura Botega & Mônica Viegas Andrade & Gilvan Ramalho Guedes, 2020. "Brazilian hospitals’ performance: an assessment of the unified health system (SUS)," Health Care Management Science, Springer, vol. 23(3), pages 443-452, September.
    21. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    22. Mehmet Ceyhan & James Benneyan, 2014. "Handling estimated proportions in public sector data envelopment analysis," Annals of Operations Research, Springer, vol. 221(1), pages 107-132, October.
    23. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    24. Ying Li & Yung-ho Chiu & Tai-Yu Lin & Yun Yuan Huang, 2019. "Market share and performance in Taiwanese banks: min/max SBM DEA," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 233-252, July.
    25. David Mayston, 2015. "Analysing the effectiveness of public service producers with endogenous resourcing," Journal of Productivity Analysis, Springer, vol. 44(1), pages 115-126, August.
    26. W W Cooper & H Deng & Z Huang & S X Li, 2002. "Chance constrained programming approaches to technical efficiencies and inefficiencies in stochastic data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(12), pages 1347-1356, December.
    27. Ruggiero, John, 1996. "On the measurement of technical efficiency in the public sector," European Journal of Operational Research, Elsevier, vol. 90(3), pages 553-565, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long Qian & Yunjie Zhou & Ying Sun, 2023. "Regional Differences, Distribution Dynamics, and Convergence of the Green Total Factor Productivity of China’s Cities under the Dual Carbon Targets," Sustainability, MDPI, vol. 15(17), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Førsund, Finn R., 2017. "Measuring effectiveness of production in the public sector," Omega, Elsevier, vol. 73(C), pages 93-103.
    2. Chiang Kao & Shiang-Tai Liu, 2022. "Stochastic efficiencies of network production systems with correlated stochastic data: the case of Taiwanese commercial banks," Annals of Operations Research, Springer, vol. 315(2), pages 1151-1174, August.
    3. Kao, Chiang & Liu, Shiang-Tai, 2009. "Stochastic data envelopment analysis in measuring the efficiency of Taiwan commercial banks," European Journal of Operational Research, Elsevier, vol. 196(1), pages 312-322, July.
    4. Sebastian Kohl & Jan Schoenfelder & Andreas Fügener & Jens O. Brunner, 2019. "The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals," Health Care Management Science, Springer, vol. 22(2), pages 245-286, June.
    5. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    6. Vincent Charles & Ioannis E. Tsolas & Tatiana Gherman, 2018. "Satisficing data envelopment analysis: a Bayesian approach for peer mining in the banking sector," Annals of Operations Research, Springer, vol. 269(1), pages 81-102, October.
    7. Kao, Chiang & Liu, Shiang-Tai, 2019. "Stochastic efficiency measures for production units with correlated data," European Journal of Operational Research, Elsevier, vol. 273(1), pages 278-287.
    8. Wu, Desheng (Dash) & Lee, Chi-Guhn, 2010. "Stochastic DEA with ordinal data applied to a multi-attribute pricing problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1679-1688, December.
    9. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    10. Petridis, Konstantinos & Malesios, Chrisovalantis & Arabatzis, Garyfallos & Thanassoulis, Emmanuel, 2013. "Efficiency analysis of forestry journals: Suggestions for improving journals’ quality," Journal of Informetrics, Elsevier, vol. 7(2), pages 505-521.
    11. Zervopoulos, Panagiotis D. & Brisimi, Theodora S. & Emrouznejad, Ali & Cheng, Gang, 2016. "Performance measurement with multiple interrelated variables and threshold target levels: Evidence from retail firms in the US," European Journal of Operational Research, Elsevier, vol. 250(1), pages 262-272.
    12. Moran, Valerie & Jacobs, Rowena, 2013. "An international comparison of efficiency of inpatient mental health care systems," Health Policy, Elsevier, vol. 112(1), pages 88-99.
    13. Ioannis E. Tsolas, 2023. "Efficiency Measurement of Lignite-Fired Power Plants in Greece Using a DEA-Bootstrap Approach," Sustainability, MDPI, vol. 15(4), pages 1-10, February.
    14. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    15. Camanho, Ana Santos & Silva, Maria Conceicao & Piran, Fabio Sartori & Lacerda, Daniel Pacheco, 2024. "A literature review of economic efficiency assessments using Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 315(1), pages 1-18.
    16. Alireza Amirteimoori & Biresh K. Sahoo & Saber Mehdizadeh, 2023. "Data envelopment analysis for scale elasticity measurement in the stochastic case: with an application to Indian banking," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-36, December.
    17. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    18. Toloo, Mehdi & Mensah, Emmanuel Kwasi & Salahi, Maziar, 2022. "Robust optimization and its duality in data envelopment analysis," Omega, Elsevier, vol. 108(C).
    19. Kang, Hee Jay & Kim, Changhee & Choi, Kanghwa, 2024. "Combining bootstrap data envelopment analysis with social networks for rank discrimination and suitable potential benchmarks," European Journal of Operational Research, Elsevier, vol. 312(1), pages 283-297.
    20. Merkert, Rico & Morrell, Peter S., 2012. "Mergers and acquisitions in aviation – Management and economic perspectives on the size of airlines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 853-862.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:25:y:2022:i:2:d:10.1007_s10729-021-09589-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.