Predicting rapid progression phases in glaucoma using a soft voting ensemble classifier exploiting Kalman filtering
Author
Abstract
Suggested Citation
DOI: 10.1007/s10729-021-09564-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Pooyan Kazemian & Jonathan E. Helm & Mariel S. Lavieri & Joshua D. Stein & Mark P. Van Oyen, 2019. "Dynamic Monitoring and Control of Irreversible Chronic Diseases with Application to Glaucoma," Production and Operations Management, Production and Operations Management Society, vol. 28(5), pages 1082-1107, May.
- Richard A Russell & David F Garway-Heath & David P Crabb, 2013. "New Insights into Measurement Variability in Glaucomatous Visual Fields from Computer Modelling," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wei Chen & Yixin Lu & Liangfei Qiu & Subodha Kumar, 2021. "Designing Personalized Treatment Plans for Breast Cancer," Information Systems Research, INFORMS, vol. 32(3), pages 932-949, September.
- Gong, Jue & Liu, Shan, 2023. "Partially observable collaborative model for optimizing personalized treatment selection," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1409-1419.
- Naumzik, Christof & Feuerriegel, Stefan & Nielsen, Anne Molgaard, 2023. "Data-driven dynamic treatment planning for chronic diseases," European Journal of Operational Research, Elsevier, vol. 305(2), pages 853-867.
- Zhao, Heng & Liu, Zixian & Li, Mei & Liang, Lijun, 2022. "Optimal monitoring policies for chronic diseases under healthcare warranty," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
More about this item
Keywords
Chronic diseases; Predictive modeling; Machine learning; Disease progression; Clinical decision making;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:24:y:2021:i:4:d:10.1007_s10729-021-09564-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.