IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v16y2013i1p1-13.html
   My bibliography  Save this article

Characteristics of service requests and service processes of fire and rescue service dispatch centers

Author

Listed:
  • Ute Krueger
  • Katja Schimmelpfeng

Abstract

A sufficient staffing level in fire and rescue dispatch centers is crucial for saving lives. Therefore, it is important to estimate the expected workload properly. For this purpose, we analyzed whether a dispatch center can be considered as a call center. Current call center publications very often model call arrivals as a non-homogeneous Poisson process. This bases on the underlying assumption of the caller’s independent decision to call or not to call. In case of an emergency, however, there are often calls from more than one person reporting the same incident and thus, these calls are not independent. Therefore, this paper focuses on the dependency of calls in a fire and rescue dispatch center. We analyzed and evaluated several distributions in this setting. Results are illustrated using real-world data collected from a typical German dispatch center in Cottbus (“Leitstelle Lausitz”). We identified the Pólya distribution as being superior to the Poisson distribution in describing the call arrival rate and the Weibull distribution to be more suitable than the exponential distribution for interarrival times and service times. However, the commonly used distributions offer acceptable approximations. This is important for estimating a sufficient staffing level in practice using, e.g., the Erlang-C model. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Ute Krueger & Katja Schimmelpfeng, 2013. "Characteristics of service requests and service processes of fire and rescue service dispatch centers," Health Care Management Science, Springer, vol. 16(1), pages 1-13, March.
  • Handle: RePEc:kap:hcarem:v:16:y:2013:i:1:p:1-13
    DOI: 10.1007/s10729-012-9207-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10729-012-9207-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10729-012-9207-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexopoulos, Christos & Goldsman, David & Fontanesi, John & Kopald, David & Wilson, James R., 2008. "Modeling patient arrivals in community clinics," Omega, Elsevier, vol. 36(1), pages 33-43, February.
    2. Lapierre, Sophie D. & Goldsman, David & Cochran, Roger & DuBow, Janice, 1999. "Bed allocation techniques based on census data," Socio-Economic Planning Sciences, Elsevier, vol. 33(1), pages 25-38, March.
    3. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.
    4. Laura McLay & Maria Mayorga, 2010. "Evaluating emergency medical service performance measures," Health Care Management Science, Springer, vol. 13(2), pages 124-136, June.
    5. Ger Koole, 2008. "Introduction to the Special Issue on Call Center Management," Management Science, INFORMS, vol. 54(2), pages 237-237, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lara Wiesche & Matthias Schacht & Brigitte Werners, 2017. "Strategies for interday appointment scheduling in primary care," Health Care Management Science, Springer, vol. 20(3), pages 403-418, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meade, Nigel & Islam, Towhidul, 2015. "Forecasting in telecommunications and ICT—A review," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1105-1126.
    2. Philipp Afèche & Mojtaba Araghi & Opher Baron, 2017. "Customer Acquisition, Retention, and Service Access Quality: Optimal Advertising, Capacity Level, and Capacity Allocation," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 674-691, October.
    3. Tolga Tezcan & Banafsheh Behzad, 2012. "Robust Design and Control of Call Centers with Flexible Interactive Voice Response Systems," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 386-401, July.
    4. Rouba Ibrahim & Pierre L'Ecuyer, 2013. "Forecasting Call Center Arrivals: Fixed-Effects, Mixed-Effects, and Bivariate Models," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 72-85, May.
    5. Achal Bassamboo & J. Michael Harrison & Assaf Zeevi, 2006. "Design and Control of a Large Call Center: Asymptotic Analysis of an LP-Based Method," Operations Research, INFORMS, vol. 54(3), pages 419-435, June.
    6. Alex Roubos & Ger Koole & Raik Stolletz, 2012. "Service-Level Variability of Inbound Call Centers," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 402-413, July.
    7. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    8. Jose H. Blanchet & Martin I. Reiman & Viragh Shah & Lawrence M. Wein & Linjia Wu, 2020. "Asymptotically Optimal Control of a Centralized Dynamic Matching Market with General Utilities," Papers 2002.03205, arXiv.org, revised Jun 2021.
    9. Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.
    10. Kinshuk Jerath & Anuj Kumar & Serguei Netessine, 2015. "An Information Stock Model of Customer Behavior in Multichannel Customer Support Services," Manufacturing & Service Operations Management, INFORMS, vol. 17(3), pages 368-383, July.
    11. Rodrigo Andrade & Somayeh Moazeni & Jose Emmanuel Ramirez‐Marquez, 2020. "A systems perspective on contact centers and customer service reliability modeling," Systems Engineering, John Wiley & Sons, vol. 23(2), pages 221-236, March.
    12. Xi Chen & Dave Worthington, 2017. "Staffing of time-varying queues using a geometric discrete time modelling approach," Annals of Operations Research, Springer, vol. 252(1), pages 63-84, May.
    13. Benjamin Legros & Sihan Ding & Rob Mei & Oualid Jouini, 2017. "Call centers with a postponed callback offer," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1097-1125, October.
    14. Achal Bassamboo & Assaf Zeevi, 2009. "On a Data-Driven Method for Staffing Large Call Centers," Operations Research, INFORMS, vol. 57(3), pages 714-726, June.
    15. Anuj Kumar & Rahul Telang, 2012. "Does the Web Reduce Customer Service Cost? Empirical Evidence from a Call Center," Information Systems Research, INFORMS, vol. 23(3-part-1), pages 721-737, September.
    16. Castillo, Ignacio & Joro, Tarja & Li, Yong Yue, 2009. "Workforce scheduling with multiple objectives," European Journal of Operational Research, Elsevier, vol. 196(1), pages 162-170, July.
    17. Dietz, Dennis C., 2011. "Practical scheduling for call center operations," Omega, Elsevier, vol. 39(5), pages 550-557, October.
    18. Mehmet Tolga Cezik & Pierre L'Ecuyer, 2008. "Staffing Multiskill Call Centers via Linear Programming and Simulation," Management Science, INFORMS, vol. 54(2), pages 310-323, February.
    19. Xiaofang Wang & Laurens G. Debo & Alan Scheller‐Wolf & Stephen F. Smith, 2012. "Service design at diagnostic service centers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(8), pages 613-628, December.
    20. Jouini, Oualid & Dallery, Yves & Aksin, Zeynep, 2009. "Queueing models for full-flexible multi-class call centers with real-time anticipated delays," International Journal of Production Economics, Elsevier, vol. 120(2), pages 389-399, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:16:y:2013:i:1:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.