IDEAS home Printed from https://ideas.repec.org/a/kap/expeco/v17y2014i2p314-334.html
   My bibliography  Save this article

Price efficiency and trading behavior in limit order markets with competing insiders

Author

Listed:
  • Thomas Stöckl

Abstract

We study price efficiency and trading behavior in laboratory limit order markets with asymmetrically informed traders. Markets differ in the number of insiders present and in the subset of traders who receive information about the number of insiders present. We observe that price efficiency (i) is the higher the higher the number of insiders in the market but (ii) is unaffected by changes in the subset of traders who know about the number of insiders present. (iii) Independent of the number of insiders, price efficiency increases gradually over time. (iv) The insiders’ information is reflected in prices via limit (market) orders if the asset’s value is inside (outside) the bid-ask spread. (v) In situations where limit and market orders yield positive profits, insiders clearly prefer market orders, indicating a strong desire for immediate transactions. Copyright Economic Science Association 2014

Suggested Citation

  • Thomas Stöckl, 2014. "Price efficiency and trading behavior in limit order markets with competing insiders," Experimental Economics, Springer;Economic Science Association, vol. 17(2), pages 314-334, June.
  • Handle: RePEc:kap:expeco:v:17:y:2014:i:2:p:314-334
    DOI: 10.1007/s10683-013-9369-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10683-013-9369-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10683-013-9369-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    2. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    3. Martin Barner & Francesco Feri & Charles R. Plott, 2005. "On the microstructure of price determination and information aggregation with sequential and asymmetric information arrival in an experimental asset market," Annals of Finance, Springer, vol. 1(1), pages 73-107, January.
    4. Bloomfield, Robert & O'Hara, Maureen & Saar, Gideon, 2005. "The "make or take" decision in an electronic market: Evidence on the evolution of liquidity," Journal of Financial Economics, Elsevier, vol. 75(1), pages 165-199, January.
    5. Meulbroek, Lisa K, 1992. "An Empirical Analysis of Illegal Insider Trading," Journal of Finance, American Finance Association, vol. 47(5), pages 1661-1699, December.
    6. Holden, Craig W & Subrahmanyam, Avanidhar, 1992. "Long-Lived Private Information and Imperfect Competition," Journal of Finance, American Finance Association, vol. 47(1), pages 247-270, March.
    7. Plott, Charles R & Sunder, Shyam, 1982. "Efficiency of Experimental Security Markets with Insider Information: An Application of Rational-Expectations Models," Journal of Political Economy, University of Chicago Press, vol. 90(4), pages 663-698, August.
    8. Urs Fischbacher, 2007. "z-Tree: Zurich toolbox for ready-made economic experiments," Experimental Economics, Springer;Economic Science Association, vol. 10(2), pages 171-178, June.
    9. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    10. Thomas R. Palfrey & Stephanie W. Wang, 2012. "Speculative Overpricing in Asset Markets With Information Flows," Econometrica, Econometric Society, vol. 80(5), pages 1937-1976, September.
    11. Camerer, Colin & Weigelt, Keith, 1991. "Information Mirages in Experimental Asset Markets," The Journal of Business, University of Chicago Press, vol. 64(4), pages 463-493, October.
    12. Easley, David & O'Hara, Maureen, 1987. "Price, trade size, and information in securities markets," Journal of Financial Economics, Elsevier, vol. 19(1), pages 69-90, September.
    13. Ron Kaniel & Hong Liu, 2006. "So What Orders Do Informed Traders Use?," The Journal of Business, University of Chicago Press, vol. 79(4), pages 1867-1914, July.
    14. Jürgen Huber & Martin Angerer & Michael Kirchler, 2011. "Experimental asset markets with endogenous choice of costly asymmetric information," Experimental Economics, Springer;Economic Science Association, vol. 14(2), pages 223-240, May.
    15. Chakravarty Sugato & Holden Craig W., 1995. "An Integrated Model of Market and Limit Orders," Journal of Financial Intermediation, Elsevier, vol. 4(3), pages 213-241, July.
    16. Friedman, Daniel & Harrison, Glenn W & Salmon, Jon W, 1984. "The Informational Efficiency of Experimental Asset Markets," Journal of Political Economy, University of Chicago Press, vol. 92(3), pages 349-408, June.
    17. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    18. Charles R. Schnitzlein, 2002. "Price Formation and Market Quality When the Number and Presence of Insiders Is Unknown," The Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1077-1109.
    19. Michael Kirchler & Jurgen Huber & Thomas Stockl, 2012. "Thar She Bursts: Reducing Confusion Reduces Bubbles," American Economic Review, American Economic Association, vol. 102(2), pages 865-883, April.
    20. Huck, Steffen & Normann, Hans-Theo & Oechssler, Jorg, 2004. "Two are few and four are many: number effects in experimental oligopolies," Journal of Economic Behavior & Organization, Elsevier, vol. 53(4), pages 435-446, April.
    21. Mitchell A. Petersen, 2009. "Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches," The Review of Financial Studies, Society for Financial Studies, vol. 22(1), pages 435-480, January.
    22. Antoine J. Bruguier & Steven R. Quartz & Peter Bossaerts, 2010. "Exploring the Nature of “Trader Intuition”," Journal of Finance, American Finance Association, vol. 65(5), pages 1703-1723, October.
    23. Goettler, Ronald L. & Parlour, Christine A. & Rajan, Uday, 2009. "Informed traders and limit order markets," Journal of Financial Economics, Elsevier, vol. 93(1), pages 67-87, July.
    24. Smith, Vernon L, 1982. "Markets as Economizers of Information: Experimental Examination of the "Hayek Hypothesis"," Economic Inquiry, Western Economic Association International, vol. 20(2), pages 165-179, April.
    25. Stephanie Wang, 2012. "Speculative Overpricing in Asset Markets with Information Flows," Working Paper 489, Department of Economics, University of Pittsburgh, revised Jan 2012.
    26. Greiner, Ben, 2004. "An Online Recruitment System for Economic Experiments," MPRA Paper 13513, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Razen & Jürgen Huber & Michael Kirchler, 2016. "Cash Inflow and Trading Horizon in Asset Markets," Working Papers 2016-06, Faculty of Economics and Statistics, Universität Innsbruck.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Stöckl, 2013. "Price efficiency and trading behavior in limit order markets with competing insiders," Working Papers 2013-11, Faculty of Economics and Statistics, Universität Innsbruck.
    2. repec:grz:wpsses:2014-03 is not listed on IDEAS
    3. Merl, Robert & Palan, Stefan & Schmidt, Dominik & Stöckl, Thomas, 2023. "Insider trading regulation and trader migration," Journal of Financial Markets, Elsevier, vol. 66(C).
    4. repec:grz:wpsses:2021-03 is not listed on IDEAS
    5. Merl, Robert & Stöckl, Thomas & Palan, Stefan, 2023. "Insider trading regulation and shorting constraints. Evaluating the joint effects of two market interventions," Journal of Banking & Finance, Elsevier, vol. 154(C).
    6. Palan, Stefan & Stöckl, Thomas, 2017. "When chasing the offender hurts the victim: The case of insider legislation," Journal of Financial Markets, Elsevier, vol. 35(C), pages 104-129.
    7. Utz Weitzel & Christoph Huber & Jürgen Huber & Michael Kirchler & Florian Lindner & Julia Rose & Lauren Cohen, 2020. "Bubbles and Financial Professionals," The Review of Financial Studies, Society for Financial Studies, vol. 33(6), pages 2659-2696.
    8. Merl, Robert, 2022. "Literature review of experimental asset markets with insiders," Journal of Behavioral and Experimental Finance, Elsevier, vol. 33(C).
    9. Baruch, Shmuel & Panayides, Marios & Venkataraman, Kumar, 2017. "Informed trading and price discovery before corporate events," Journal of Financial Economics, Elsevier, vol. 125(3), pages 561-588.
    10. Corgnet, Brice & DeSantis, Mark & Porter, David, 2020. "The distribution of information and the price efficiency of markets," Journal of Economic Dynamics and Control, Elsevier, vol. 110(C).
    11. Stöckl, Thomas & Palan, Stefan, 2018. "Catch me if you can. Can human observers identify insiders in asset markets?," Journal of Economic Psychology, Elsevier, vol. 67(C), pages 1-17.
    12. repec:grz:wpsses:2021-04 is not listed on IDEAS
    13. Chiarella, Carl & He, Xue-Zhong & Wei, Lijian, 2015. "Learning, information processing and order submission in limit order markets," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 245-268.
    14. Oechssler, Jörg & Schmidt, Carsten & Schnedler, Wendelin, 2011. "On the ingredients for bubble formation: Informed traders and communication," Journal of Economic Dynamics and Control, Elsevier, vol. 35(11), pages 1831-1851.
    15. Mazza, Paolo, 2015. "Price dynamics and market liquidity: An intraday event study on Euronext," The Quarterly Review of Economics and Finance, Elsevier, vol. 56(C), pages 139-153.
    16. Marvin Wee & Joey W. Yang, 2016. "The Evolution of Informed Liquidity Provision: Evidence from an Order†driven Market," European Financial Management, European Financial Management Association, vol. 22(5), pages 882-915, November.
    17. Alex Boulatov & Thomas J. George, 2013. "Hidden and Displayed Liquidity in Securities Markets with Informed Liquidity Providers," The Review of Financial Studies, Society for Financial Studies, vol. 26(8), pages 2096-2137.
    18. Murphy Jun Jie Lee, 2013. "The Microstructure of Trading Processes on the Singapore Exchange," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4, July-Dece.
    19. Marquardt, Philipp & Noussair, Charles N & Weber, Martin, 2019. "Rational expectations in an experimental asset market with shocks to market trends," European Economic Review, Elsevier, vol. 114(C), pages 116-140.
    20. Matthias Sutter & Jürgen Huber & Michael Kirchler, 2012. "Bubbles and Information: An Experiment," Management Science, INFORMS, vol. 58(2), pages 384-393, February.
    21. Ackert, Lucy F. & Church, Bryan K. & Zhang, Ping, 2018. "Informed traders’ performance and the information environment: Evidence from experimental asset markets," Accounting, Organizations and Society, Elsevier, vol. 70(C), pages 1-15.
    22. Jason Shachat & Anand Srinivasan, 2022. "Informational Price Cascades and Non-Aggregation of Asymmetric Information in Experimental Asset Markets," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 23(4), pages 388-407, November.
    23. Lawrence Choo & Todd R. Kaplan & Ro’i Zultan, 2019. "Information aggregation in Arrow–Debreu markets: an experiment," Experimental Economics, Springer;Economic Science Association, vol. 22(3), pages 625-652, September.

    More about this item

    Keywords

    Insider; Competition; Asset market; Price efficiency; Trading behavior; Experimental economics; C92; D82; G12; G14;
    All these keywords.

    JEL classification:

    • C92 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Group Behavior
    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:expeco:v:17:y:2014:i:2:p:314-334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.