IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v58y2014i4p627-647.html
   My bibliography  Save this article

Repeated Experimentation to Learn About a Flow-Pollutant Threshold

Author

Listed:
  • Rolf Groeneveld
  • Michael Springborn
  • Christopher Costello

Abstract

We examine in discrete time the management of a flow pollutant that causes damage when it crosses a fixed but unknown threshold. The manager sequentially chooses a pollution level that allows learning about the threshold, thereby improving future decisions. If crossed, damage can be reversed at some cost. We analyze the conditions under which experimentation is optimal, and explore how experimentation depends on restoration costs, information about the threshold, and the discount rate. Our results suggest that the level of experimentation, defined as the difference between the optimal activity with and without learning, is non-monotonic in costs and decreasing in the discount rate. We identify two stopping boundaries for the experiment, depending on cost levels compared to the lower bound of the threshold’s interval. We show that when costs are high the stopping boundary under an infinite number of decisions is the same as when there are only two decision moments. A computational extension to more than two decisions suggests that an optimal sequence of experiments can cross the same threshold several times before experimentation ceases. These results shed light on a large class of environmental decision problems that has not been examined in the literature. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Rolf Groeneveld & Michael Springborn & Christopher Costello, 2014. "Repeated Experimentation to Learn About a Flow-Pollutant Threshold," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(4), pages 627-647, August.
  • Handle: RePEc:kap:enreec:v:58:y:2014:i:4:p:627-647
    DOI: 10.1007/s10640-013-9713-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10640-013-9713-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10640-013-9713-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naevdal, Eric & Oppenheimer, Michael, 2007. "The economics of the thermohaline circulation--A problem with multiple thresholds of unknown locations," Resource and Energy Economics, Elsevier, vol. 29(4), pages 262-283, November.
    2. Kolstad, Charles D., 1996. "Learning and Stock Effects in Environmental Regulation: The Case of Greenhouse Gas Emissions," Journal of Environmental Economics and Management, Elsevier, vol. 31(1), pages 1-18, July.
    3. Derek Lemoine & Christian Traeger, 2014. "Watch Your Step: Optimal Policy in a Tipping Climate," American Economic Journal: Economic Policy, American Economic Association, vol. 6(1), pages 137-166, February.
    4. de Zeeuw, Aart & Zemel, Amos, 2012. "Regime shifts and uncertainty in pollution control," Journal of Economic Dynamics and Control, Elsevier, vol. 36(7), pages 939-950.
    5. Polasky, Stephen & de Zeeuw, Aart & Wagener, Florian, 2011. "Optimal management with potential regime shifts," Journal of Environmental Economics and Management, Elsevier, vol. 62(2), pages 229-240, September.
    6. Hoel, Michael & Karp, Larry, 2002. "Taxes versus quotas for a stock pollutant," Resource and Energy Economics, Elsevier, vol. 24(4), pages 367-384, November.
    7. Leizarowitz, Arie & Tsur, Yacov, 2012. "Renewable resource management with stochastic recharge and environmental threats," Journal of Economic Dynamics and Control, Elsevier, vol. 36(5), pages 736-753.
    8. Karp, Larry, 2004. "Dynamic Taxes and Quotas with Learning," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt8pg8s922, Department of Agricultural & Resource Economics, UC Berkeley.
    9. Craig A. Bond & John B. Loomis, 2009. "Using Numerical Dynamic Programming to Compare Passive and Active Learning in the Adaptive Management of Nutrients in Shallow Lakes," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 57(4), pages 555-573, December.
    10. Tsur, Yacov & Zemel, Amos, 1998. "Pollution control in an uncertain environment," Journal of Economic Dynamics and Control, Elsevier, vol. 22(6), pages 967-975, June.
    11. Brozovic, Nicholas & Schlenker, Wolfram, 2011. "Optimal management of an ecosystem with an unknown threshold," Ecological Economics, Elsevier, vol. 70(4), pages 627-640, February.
    12. Keller, Klaus & Bolker, Benjamin M. & Bradford, D.F.David F., 2004. "Uncertain climate thresholds and optimal economic growth," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 723-741, July.
    13. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    14. Costello, Christopher & Karp, Larry, 2004. "Dynamic taxes and quotas with learning," Journal of Economic Dynamics and Control, Elsevier, vol. 28(8), pages 1661-1680, June.
    15. Clarke, Harry R. & Reed, William J., 1994. "Consumption/pollution tradeoffs in an environment vulnerable to pollution-related catastrophic collapse," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 991-1010, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nkuiya, Bruno & Costello, Christopher, 2016. "Pollution control under a possible future shift in environmental preferences," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 193-205.
    2. Charles Sims & David Finnoff, 2016. "Opposing Irreversibilities and Tipping Point Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(4), pages 985-1022.
    3. Jacob LaRiviere & David Kling & James N Sanchirico & Charles Sims & Michael Springborn, 2018. "The Treatment of Uncertainty and Learning in the Economics of Natural Resource and Environmental Management," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 92-112.
    4. Nkuiya, Bruno, 2015. "Transboundary pollution game with potential shift in damages," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 1-14.
    5. Springborn, Michael R., 2014. "Risk aversion and adaptive management: Insights from a multi-armed bandit model of invasive species risk," Journal of Environmental Economics and Management, Elsevier, vol. 68(2), pages 226-242.
    6. Nkuiya, Bruno, 2020. "Tradeoffs between costly capacity investment and risk of regime shift," Economic Modelling, Elsevier, vol. 91(C), pages 117-127.
    7. Nkuiya, Bruno & Diekert, Florian, 2023. "Stochastic growth and regime shift risk in renewable resource management," Ecological Economics, Elsevier, vol. 208(C).
    8. Diekert, Florian K., 2017. "Threatening thresholds? The effect of disastrous regime shifts on the non-cooperative use of environmental goods and services," Journal of Public Economics, Elsevier, vol. 147(C), pages 30-49.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Bijie & Polasky, Stephen, 2014. "The optimal management of renewable resources under the risk of potential regime shift," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 195-212.
    2. Michele Baggio, 2016. "Optimal Fishery Management with Regime Shifts: An Assessment of Harvesting Strategies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(3), pages 465-492, July.
    3. Maria Arvaniti & Chandra K. Krishnamurthy & Anne-Sophie Crépin, 2019. "Time-consistent resource management with regime shifts," CER-ETH Economics working paper series 19/329, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    4. Lemoine, Derek M. & Traeger, Christian P., 2010. "Tipping Points and Ambiguity in the Economics of Climate Change," CUDARE Working Papers 98127, University of California, Berkeley, Department of Agricultural and Resource Economics.
    5. Diekert, Florian K., 2017. "Threatening thresholds? The effect of disastrous regime shifts on the non-cooperative use of environmental goods and services," Journal of Public Economics, Elsevier, vol. 147(C), pages 30-49.
    6. Crépin, Anne-Sophie & Biggs, Reinette & Polasky, Stephen & Troell, Max & de Zeeuw, Aart, 2012. "Regime shifts and management," Ecological Economics, Elsevier, vol. 84(C), pages 15-22.
    7. de Zeeuw, Aart & He, Xiaoli, 2017. "Managing a renewable resource facing the risk of a regime shift in the ecological system," Resource and Energy Economics, Elsevier, vol. 48(C), pages 42-54.
    8. Polasky, Stephen & de Zeeuw, Aart & Wagener, Florian, 2011. "Optimal management with potential regime shifts," Journal of Environmental Economics and Management, Elsevier, vol. 62(2), pages 229-240, September.
    9. Nkuiya, Bruno & Costello, Christopher, 2016. "Pollution control under a possible future shift in environmental preferences," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 193-205.
    10. Lemoine, Derek & Traeger, Christian P., 2016. "Ambiguous tipping points," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 5-18.
    11. Arvaniti, Maria & Krishnamurthy, Chandra Kiran B. & Crépin, Anne-Sophie, 2023. "Time-consistent renewable resource management with present bias and regime shifts," Journal of Economic Behavior & Organization, Elsevier, vol. 207(C), pages 479-495.
    12. Thomas S. Lontzek & Daiju Narita & Ole Wilms, 2016. "Stochastic Integrated Assessment of Ecosystem Tipping Risk," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 573-598, November.
    13. Charles Sims & David Finnoff, 2016. "Opposing Irreversibilities and Tipping Point Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(4), pages 985-1022.
    14. Derek Lemoine & Christian Traeger, 2014. "Watch Your Step: Optimal Policy in a Tipping Climate," American Economic Journal: Economic Policy, American Economic Association, vol. 6(1), pages 137-166, February.
    15. Tsur, Yacov & Zemel, Amos, 2012. "Dynamic and stochastic analysis of environmental and natural resources," Discussion Papers 120017, Hebrew University of Jerusalem, Department of Agricultural Economics and Management.
    16. Bommier, Antoine & Lanz, Bruno & Zuber, Stéphane, 2015. "Models-as-usual for unusual risks? On the value of catastrophic climate change," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 1-22.
    17. Gustav Engström & Johan Gars, 2016. "Climatic Tipping Points and Optimal Fossil-Fuel Use," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 541-571, November.
    18. Sakamoto, Hiroaki, 2014. "Dynamic resource management under the risk of regime shifts," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 1-19.
    19. Brozovic, Nicholas & Schlenker, Wolfram, 2011. "Optimal management of an ecosystem with an unknown threshold," Ecological Economics, Elsevier, vol. 70(4), pages 627-640, February.
    20. van der Ploeg, Frederick, 2014. "Abrupt positive feedback and the social cost of carbon," European Economic Review, Elsevier, vol. 67(C), pages 28-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:58:y:2014:i:4:p:627-647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.